
mrjob Documentation
Release 0.7.4

Steve Johnson

September 17, 2020

Contents

1 Guides 3
1.1 Why mrjob? . 3
1.2 Fundamentals . 4
1.3 Concepts . 7
1.4 Writing jobs . 9
1.5 Runners . 23
1.6 Spark . 27
1.7 Config file format and location . 34
1.8 Options available to all runners . 39
1.9 Hadoop-related options . 44
1.10 Spark runner options . 47
1.11 Configuration quick reference . 49
1.12 Cloud runner options . 52
1.13 Job Environment Setup Cookbook . 57
1.14 Hadoop Cookbook . 59
1.15 Testing jobs . 60
1.16 Cloud Dataproc . 64
1.17 Elastic MapReduce . 68
1.18 Python 2 vs. Python 3 . 83
1.19 Contributing to mrjob . 84

2 Reference 87
2.1 mrjob.ami - building custom AMIs . 87
2.2 mrjob.cat - decompress files based on extension . 87
2.3 mrjob.cmd: The mrjob command-line utility . 88
2.4 mrjob.compat - Hadoop version compatibility . 98
2.5 mrjob.conf - parse and write config files . 99
2.6 mrjob.dataproc - run on Dataproc . 101
2.7 mrjob.emr - run on EMR . 102
2.8 mrjob.hadoop - run on your Hadoop cluster . 103
2.9 mrjob.inline - debugger-friendly local testing . 104
2.10 mrjob.job - defining your job . 104
2.11 mrjob.local - simulate Hadoop locally with subprocesses . 115
2.12 mrjob.parse - log parsing . 116
2.13 mrjob.protocol - input and output . 116
2.14 mrjob.spark.runner - run on any Spark cluster . 119
2.15 mrjob.retry - retry on transient errors . 120
2.16 mrjob.runner - base class for all runners . 120

i

2.17 mrjob.step - represent Job Steps . 124
2.18 mrjob.setup - job environment setup . 127
2.19 mrjob.util - general utility functions . 130

3 What’s New 133
3.1 0.7.4 . 133
3.2 0.7.3 . 134
3.3 0.7.2 . 134
3.4 0.7.1 . 135
3.5 0.7.0 . 135
3.6 0.6.12 . 137
3.7 0.6.11 . 137
3.8 0.6.10 . 137
3.9 0.6.9 . 138
3.10 0.6.8 . 138
3.11 0.6.7 . 140
3.12 0.6.6 . 141
3.13 0.6.5 . 142
3.14 0.6.4 . 142
3.15 0.6.3 . 143
3.16 0.6.2 . 144
3.17 0.6.1 . 144
3.18 0.6.0 . 144
3.19 0.5.12 . 147
3.20 0.5.11 . 147
3.21 0.5.10 . 147
3.22 0.5.9 . 148
3.23 0.5.8 . 148
3.24 0.5.7 . 149
3.25 0.5.6 . 150
3.26 0.5.5 . 150
3.27 0.5.4 . 150
3.28 0.5.3 . 152
3.29 0.5.2 . 152
3.30 0.5.1 . 153
3.31 0.5.0 . 153
3.32 0.4.6 . 157
3.33 0.4.5 . 157
3.34 0.4.4 . 158
3.35 0.4.3 . 158
3.36 0.4.2 . 159
3.37 0.4.1 . 159
3.38 0.4.0 . 160
3.39 0.3.5 . 160
3.40 0.3.3 . 160
3.41 0.3.2 . 161
3.42 0.3 . 161

4 Glossary 165

Python Module Index 167

ii

mrjob Documentation, Release 0.7.4

mrjob lets you write MapReduce jobs in Python 2.7/3.4+ and run them on several platforms. You can:

• Write multi-step MapReduce jobs in pure Python

• Test on your local machine

• Run on a Hadoop cluster

• Run in the cloud using Amazon Elastic MapReduce (EMR)

• Run in the cloud using Google Cloud Dataproc (Dataproc)

• Easily run Spark jobs on EMR or your own Hadoop cluster

mrjob is licensed under the Apache License, Version 2.0.

To get started, install with pip:

pip install mrjob

and begin reading the tutorial below.

Contents 1

http://aws.amazon.com/documentation/elasticmapreduce/
https://cloud.google.com/dataproc/overview
https://raw.github.com/Yelp/mrjob/master/LICENSE.txt

mrjob Documentation, Release 0.7.4

2 Contents

CHAPTER 1

Guides

1.1 Why mrjob?

1.1.1 Overview

mrjob is the easiest route to writing Python programs that run on Hadoop. If you use mrjob, you’ll be able to test your
code locally without installing Hadoop or run it on a cluster of your choice.

Additionally, mrjob has extensive integration with Amazon Elastic MapReduce. Once you’re set up, it’s as easy to run
your job in the cloud as it is to run it on your laptop.

Here are a number of features of mrjob that make writing MapReduce jobs easier:

• Keep all MapReduce code for one job in a single class

• Easily upload and install code and data dependencies at runtime

• Switch input and output formats with a single line of code

• Automatically download and parse error logs for Python tracebacks

• Put command line filters before or after your Python code

If you don’t want to be a Hadoop expert but need the computing power of MapReduce, mrjob might be just the thing
for you.

1.1.2 Why use mrjob instead of X?

Where X is any other library that helps Hadoop and Python interface with each other.

1. mrjob has more documentation than any other framework or library we are aware of. If you’re reading this, it’s
probably your first contact with the library, which means you are in a great position to provide valuable feedback
about our documentation. Let us know if anything is unclear or hard to understand.

2. mrjob lets you run your code without Hadoop at all. Other frameworks require a Hadoop instance to function at
all. If you use mrjob, you’ll be able to write proper tests for your MapReduce code.

3. mrjob provides a consistent interface across every environment it supports. No matter whether you’re running
locally, in the cloud, or on your own cluster, your Python code doesn’t change at all.

4. mrjob handles much of the machinery of getting code and data to and from the cluster your job runs on. You
don’t need a series of scripts to install dependencies or upload files.

3

http://github.com/yelp/mrjob/issues/new
http://github.com/yelp/mrjob/issues/new

mrjob Documentation, Release 0.7.4

5. mrjob makes debugging much easier. Locally, it can run a simple MapReduce implementation in-process, so
you get a traceback in your console instead of in an obscure log file. On a cluster or on Elastic MapReduce, it
parses error logs for Python tracebacks and other likely causes of failure.

6. mrjob automatically serializes and deserializes data going into and coming out of each task so you don’t need
to constantly json.loads() and json.dumps().

1.1.3 Why use X instead of mrjob?

The flip side to mrjob’s ease of use is that it doesn’t give you the same level of access to Hadoop APIs that Dumbo
and Pydoop do. It’s simplified a great deal. But that hasn’t stopped several companies, including Yelp, from using it
for day-to-day heavy lifting. For common (and many uncommon) cases, the abstractions help rather than hinder.

Other libraries can be faster if you use typedbytes. There have been several attempts at integrating it with mrjob, and
it may land eventually, but it doesn’t exist yet.

1.2 Fundamentals

1.2.1 Installation

Install with pip:

pip install mrjob

or from a git clone of the source code:

python setup.py test && python setup.py install

1.2.2 Writing your first job

Open a file called mr_word_count.py and type this into it:

from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):

def mapper(self, _, line):
yield "chars", len(line)
yield "words", len(line.split())
yield "lines", 1

def reducer(self, key, values):
yield key, sum(values)

if __name__ == '__main__':
MRWordFrequencyCount.run()

Now go back to the command line, find your favorite body of text (such mrjob’s README.rst, or even your new file
mr_word_count.py), and try this:

$ python mr_word_count.py my_file.txt

4 Chapter 1. Guides

http://www.git-scm.org/
http://www.github.com/yelp/mrjob

mrjob Documentation, Release 0.7.4

You should see something like this:

"chars" 3654
"lines" 123
"words" 417

Congratulations! You’ve just written and run your first program with mrjob.

What’s happening

A job is defined by a class that inherits from MRJob. This class contains methods that define the steps of your job.

A “step” consists of a mapper, a combiner, and a reducer. All of those are optional, though you must have at least one.
So you could have a step that’s just a mapper, or just a combiner and a reducer.

When you only have one step, all you have to do is write methods called mapper(), combiner(), and
reducer().

The mapper() method takes a key and a value as args (in this case, the key is ignored and a single line of text input is
the value) and yields as many key-value pairs as it likes. The reduce() method takes a key and an iterator of values
and also yields as many key-value pairs as it likes. (In this case, it sums the values for each key, which represent the
numbers of characters, words, and lines in the input.)

Warning: Forgetting the following information will result in confusion.

The final required component of a job file is these two lines at the end of the file, every time:

if __name__ == '__main__':
MRWordCounter.run() # where MRWordCounter is your job class

These lines pass control over the command line arguments and execution to mrjob. Without them, your job will not
work. For more information, see Hadoop Streaming and mrjob and Why can’t I put the job class and run code in the
same file?.

1.2.3 Running your job different ways

The most basic way to run your job is on the command line:

$ python my_job.py input.txt

By default, output will be written to stdout.

You can pass input via stdin, but be aware that mrjob will just dump it to a file first:

$ python my_job.py < input.txt

You can pass multiple input files, mixed with stdin (using the - character):

$ python my_job.py input1.txt input2.txt - < input3.txt

By default, mrjob will run your job in a single Python process. This provides the friendliest debugging experience, but
it’s not exactly distributed computing!

You change the way the job is run with the -r/--runner option. You can use -r inline (the default), -r
local, -r hadoop, or -r emr.

To run your job in multiple subprocesses with a few Hadoop features simulated, use -r local.

To run it on your Hadoop cluster, use -r hadoop.

1.2. Fundamentals 5

http://docs.python.org/2/library/functions.html#reduce

mrjob Documentation, Release 0.7.4

If you have Dataproc configured (see Dataproc Quickstart), you can run it there with -r dataproc.

Your input files can come from HDFS if you’re using Hadoop, or GCS if you’re using Dataproc:

$ python my_job.py -r dataproc gcs://my-inputs/input.txt
$ python my_job.py -r hadoop hdfs://my_home/input.txt

If you have Elastic MapReduce configured (see Elastic MapReduce Quickstart), you can run it there with -r emr.

Your input files can come from HDFS if you’re using Hadoop, or S3 if you’re using EMR:

$ python my_job.py -r emr s3://my-inputs/input.txt
$ python my_job.py -r hadoop hdfs://my_home/input.txt

If your code spans multiple files, see Uploading your source tree.

1.2.4 Writing your second job

Most of the time, you’ll need more than one step in your job. To define multiple steps, override steps() to return a
list of MRSteps.

Here’s a job that finds the most commonly used word in the input:

from mrjob.job import MRJob
from mrjob.step import MRStep
import re

WORD_RE = re.compile(r"[\w']+")

class MRMostUsedWord(MRJob):

def steps(self):
return [

MRStep(mapper=self.mapper_get_words,
combiner=self.combiner_count_words,
reducer=self.reducer_count_words),

MRStep(reducer=self.reducer_find_max_word)
]

def mapper_get_words(self, _, line):
yield each word in the line
for word in WORD_RE.findall(line):

yield (word.lower(), 1)

def combiner_count_words(self, word, counts):
optimization: sum the words we've seen so far
yield (word, sum(counts))

def reducer_count_words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so we can easily use Python's max() function.
yield None, (sum(counts), word)

discard the key; it is just None
def reducer_find_max_word(self, _, word_count_pairs):

each item of word_count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max(word_count_pairs)

6 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

if __name__ == '__main__':
MRMostUsedWord.run()

1.2.5 Configuration

mrjob has an overflowing cornucopia of configuration options. You’ll want to specify some on the command line,
some in a config file.

You can put a config file at /etc/mrjob.conf, ~/.mrjob.conf, or ./mrjob.conf for mrjob to find it
without passing it via --conf-path.

Config files are interpreted as YAML if you have the yaml module installed. Otherwise, they are interpreted as JSON.

See Config file format and location for in-depth information. Here is an example file:

runners:
emr:
aws-region: us-west-2

inline:
local_tmp_dir: $HOME/.tmp

1.3 Concepts

1.3.1 MapReduce and Apache Hadoop

This section uses text from Apache’s MapReduce Tutorial.

MapReduce is a way of writing programs designed for processing vast amounts of data, and a system for running those
programs in a distributed and fault-tolerant way. Apache Hadoop is one such system designed primarily to run Java
code.

A MapReduce job usually splits the input data-set into independent chunks which are processed by the map tasks in
a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks.
Typically both the input and the output of the job are stored in a file system shared by all processing nodes. The
framework takes care of scheduling tasks, monitoring them, and re-executing the failed tasks.

The MapReduce framework consists of a single master “job tracker” (Hadoop 1) or “resource manager” (Hadoop 2)
and a number of worker nodes. The master is responsible for scheduling the jobs’ component tasks on the worker
nodes and re-executing the failed tasks. The worker nodes execute the tasks as directed by the master.

As the job author, you write map, combine, and reduce functions that are submitted to the job tracker for execution.

A mapper takes a single key and value as input, and returns zero or more (key, value) pairs. The pairs from all map
outputs of a single step are grouped by key.

A combiner takes a key and a subset of the values for that key as input and returns zero or more (key, value) pairs.
Combiners are optimizations that run immediately after each mapper and can be used to decrease total data transfer.
Combiners should be idempotent (produce the same output if run multiple times in the job pipeline).

A reducer takes a key and the complete set of values for that key in the current step, and returns zero or more arbitrary
(key, value) pairs as output.

After the reducer has run, if there are more steps, the individual results are arbitrarily assigned to mappers for further
processing. If there are no more steps, the results are sorted and made available for reading.

1.3. Concepts 7

http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/

mrjob Documentation, Release 0.7.4

An example

Consider a program that counts how many times words occur in a document. Here is some input:

The wheels on the bus go round and round,
round and round, round and round
The wheels on the bus go round and round,
all through the town.

The inputs to the mapper will be (None, "one line of text"). (The key is None because the input is just raw
text.)

The mapper converts the line to lowercase, removes punctuation, splits it on whitespace, and outputs (word, 1) for
each item.

mapper input: (None, "The wheels on the bus go round and round,")
mapper output:

"the", 1
"wheels", 1
"on", 1
"the", 1
"bus", 1
"go", 1
"round", 1
"and", 1
"round", 1

Each call to the combiner gets a word as the key and a list of 1s as the value. It sums the 1s and outputs the original
key and the sum.

combiner input: ("the", [1, 1])
combiner output:

"the", 2

The reducer is identical to the combiner; for each key, it simply outputs the original key and the sum of the values.

reducer input: ("round", [2, 4, 2])
reducer output:

"round", 8

The final output is collected:

"all", 1
"and", 4
"bus", 2
"go", 2
"on", 2
"round", 8
"the", 5
"through", 1
"town", 1
"wheels", 2

Your algorithm may require several repetitions of this process.

1.3.2 Hadoop Streaming and mrjob

Note: If this is your first exposure to MapReduce or Hadoop, you may want to skip this section and come back later.
Feel free to stick with it if you feel adventurous.

8 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

Although Hadoop is primarly designed to work with Java code, it supports other languages via Hadoop Streaming.
This jar opens a subprocess to your code, sends it input via stdin, and gathers results via stdout.

In most cases, the input to a Hadoop Streaming job is a set of newline-delimited files. Each line of input is passed to
your mapper, which outputs key-value pairs expressed as two strings separated by a tab and ending with a newline,
like this:

key1\tvalue1\nkey2\tvalue2\n

Hadoop then sorts the output lines by key (the line up to the first tab character) and passes the sorted lines to the
appropriate combiners or reducers.

mrjob is a framework that assists you in submitting your job to the Hadoop job tracker and in running each individual
step under Hadoop Streaming.

How your program is run

Depending on the way your script is invoked on the command line, it will behave in different ways. You’ll only ever
use one of these; the rest are for mrjob and Hadoop Streaming to use.

When you run with no arguments or with --runner, you invoke mrjob’s machinery for running your job or submit-
ting it to the cluster. Your mappers and reducers are not called in this process at all 1.

This process creates a runner (see MRJobRunner), which then sends the job to Hadoop 2.

It tells Hadoop something like this:

• Run a step with Hadoop Streaming.

• The command for the mapper is python my_job.py --step-num=0 --mapper.

• The command for the combiner is python my_job.py --step-num=0 --combiner.

• The command for the reducer is python my_job.py --step-num=0 --reducer.

If you have a multi-step job, --step-num helps your script know which step is being run.

When Hadoop distributes tasks among the task nodes, Hadoop Streaming will use the appropriate command to process
the data it is given.

Note: Prior to v0.6.7, your job would also run itself locally with the --steps switch, to get a JSON representation
of the job’s step. Jobs now pass that representation directly to the runner when they instantiate it. See mrjob.step -
represent Job Steps for more information.

1.4 Writing jobs

This guide covers everything you need to know to write your job. You’ll probably need to flip between this guide and
Runners to find all the information you need.

1 Unless you’re using the inline runner, which is a special case for debugging.
2 Or when using the local runner, a simulation of Hadoop.

1.4. Writing jobs 9

mrjob Documentation, Release 0.7.4

1.4.1 Defining steps

Your job will be defined in a file to be executed on your machine as a Python script, as well as on a Hadoop cluster as
an individual map, combine, or reduce task. (See How your program is run for more on that.)

All dependencies must either be contained within the file, available on the task nodes, or uploaded to the cluster by
mrjob when your job is submitted. (Runners explains how to do those things.)

The following two sections are more reference-oriented versions of Writing your first job and Writing your second job.

Single-step jobs

The simplest way to write a one-step job is to subclass MRJob and override a few methods:

from mrjob.job import MRJob
import re

WORD_RE = re.compile(r"[\w']+")

class MRWordFreqCount(MRJob):

def mapper(self, _, line):
for word in WORD_RE.findall(line):

yield word.lower(), 1

def combiner(self, word, counts):
yield word, sum(counts)

def reducer(self, word, counts):
yield word, sum(counts)

if __name__ == '__main__':
MRWordFreqCount.run()

(See Writing your first job for an explanation of this example.)

Here are all the methods you can override to write a one-step job. We’ll explain them over the course of this document.

• mapper()

• combiner()

• reducer()

• mapper_init()

• combiner_init()

• reducer_init()

• mapper_final()

• combiner_final()

• reducer_final()

• mapper_cmd()

• combiner_cmd()

10 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

• reducer_cmd()

• mapper_pre_filter()

• combiner_pre_filter()

• reducer_pre_filter()

Multi-step jobs

To define multiple steps, override steps() to return a list of MRSteps:

from mrjob.job import MRJob
from mrjob.step import MRStep
import re

WORD_RE = re.compile(r"[\w']+")

class MRMostUsedWord(MRJob):

def mapper_get_words(self, _, line):
yield each word in the line
for word in WORD_RE.findall(line):

yield (word.lower(), 1)

def combiner_count_words(self, word, counts):
sum the words we've seen so far
yield (word, sum(counts))

def reducer_count_words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so we can easily use Python's max() function.
yield None, (sum(counts), word)

discard the key; it is just None
def reducer_find_max_word(self, _, word_count_pairs):

each item of word_count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max(word_count_pairs)

def steps(self):
return [

MRStep(mapper=self.mapper_get_words,
combiner=self.combiner_count_words,
reducer=self.reducer_count_words),

MRStep(reducer=self.reducer_find_max_word)
]

if __name__ == '__main__':
MRMostUsedWord.run()

(This example is explained further in Protocols.)

The keyword arguments accepted by MRStep are the same as the method names listed in the previous section, plus a
jobconf argument which takes a dictionary of jobconf arguments to pass to Hadoop.

Note: If this is your first time learning about mrjob, you should skip down to Protocols and finish this section later.

1.4. Writing jobs 11

mrjob Documentation, Release 0.7.4

Setup and teardown of tasks

Remember from How your program is run that your script is invoked once per task by Hadoop Streaming. It starts
your script, feeds it stdin, reads its stdout, and closes it. mrjob lets you write methods to run at the beginning and end
of this process: the *_init() and *_final() methods:

• mapper_init()

• combiner_init()

• reducer_init()

• mapper_final()

• combiner_final()

• reducer_final()

(And the corresponding keyword arguments to MRStep.)

If you need to load some kind of support file, like a sqlite3 database, or perhaps create a temporary file, you can
use these methods to do so. (See File options for an example.)

*_init() and *_final() methods can yield values just like normal tasks. Here is our word frequency count
example rewritten to use these methods:

from mrjob.job import MRJob
from mrjob.step import MRStep

class MRWordFreqCount(MRJob):

def init_get_words(self):
self.words = {}

def get_words(self, _, line):
for word in WORD_RE.findall(line):

word = word.lower()
self.words.setdefault(word, 0)
self.words[word] = self.words[word] + 1

def final_get_words(self):
for word, val in self.words.iteritems():

yield word, val

def sum_words(self, word, counts):
yield word, sum(counts)

def steps(self):
return [MRStep(mapper_init=self.init_get_words,

mapper=self.get_words,
mapper_final=self.final_get_words,
combiner=self.sum_words,
reducer=self.sum_words)]

In this version, instead of yielding one line per word, the mapper keeps an internal count of word occurrences across
all lines this mapper has seen so far. The mapper itself yields nothing. When Hadoop Streaming stops sending data
to the map task, mrjob calls final_get_words(). That function emits the totals for this task, which is a much
smaller set of output lines than the mapper would have output.

12 Chapter 1. Guides

http://docs.python.org/2/library/sqlite3.html#module-sqlite3

mrjob Documentation, Release 0.7.4

The optimization above is similar to using combiners, demonstrated in Multi-step jobs. It is usually clearer to use a
combiner rather than a custom data structure, and Hadoop may run combiners in more places than just the ends of
tasks.

Defining command line options has a partial example that shows how to load a sqlite3 database using
mapper_init().

Shell commands as steps

You can forego scripts entirely for a step by specifying it as a shell command. To do so, use mapper_cmd,
combiner_cmd, or reducer_cmd as arguments to MRStep, or override the methods of the same names on
MRJob. (See mapper_cmd(), combiner_cmd(), and reducer_cmd().)

Warning: The default inline runner does not support *_cmd(). If you want to test locally, use the local
runner (-r local).

You may mix command and script steps at will. This job will count the number of lines containing the string “kitty”:

from mrjob.job import job

class KittyJob(MRJob):

OUTPUT_PROTOCOL = JSONValueProtocol

def mapper_cmd(self):
return "grep kitty"

def reducer(self, key, values):
yield None, sum(1 for _ in values)

if __name__ == '__main__':
KittyJob.run()

Step commands are run without a shell, so if you want to use pipes, etc, you’ll need to run them in a subshell. For
example:

class DemoJob(MRJob):

def mapper_cmd(self):
return 'sh -c "grep 'blah' | wc -l"'

Note: You may not use *_cmd() with any other options for a task such as *_filter(), *_init(),
*_final(), or a regular mapper/combiner/reducer function.

Note: You might see an opportunity here to write your MapReduce code in whatever language you please. If that
appeals to you, check out upload_files for another piece of the puzzle.

Filtering task input with shell commands

You can specify a command to filter a task’s input before it reaches your task using the mapper_pre_filter and
reducer_pre_filter arguments to MRStep, or override the methods of the same names on MRJob. Doing so
will cause mrjob to pipe input through that command before it reaches your mapper.

1.4. Writing jobs 13

http://docs.python.org/2/library/sqlite3.html#module-sqlite3

mrjob Documentation, Release 0.7.4

Warning: The default inline runner does not support *_pre_filter(). If you want to test locally, use the
local runner (-r local).

Here’s a job that tests filters using grep:

from mrjob.job import MRJob
from mrjob.protocol import JSONValueProtocol
from mrjob.step import MRStep

class KittiesJob(MRJob):

OUTPUT_PROTOCOL = JSONValueProtocol

def test_for_kitty(self, _, value):
yield None, 0 # make sure we have some output
if 'kitty' not in value:

yield None, 1

def sum_missing_kitties(self, _, values):
yield None, sum(values)

def steps(self):
return [

MRStep(mapper_pre_filter='grep "kitty"',
mapper=self.test_for_kitty,
reducer=self.sum_missing_kitties)]

if __name__ == '__main__':
KittiesJob.run()

The output of the job should always be 0, since every line that gets to test_for_kitty() is filtered by grep to
have “kitty” in it.

1.4.2 Protocols

Hadoop streaming assumes that all data is newline-delimited bytes. By default, mrjob assumes all output is in JSON
format, but it can actually read and write lines in any format by using protocols.

(If you need to read non-line-based data, see Passing entire files to the mapper, below.)

Each job has an input protocol, an output protocol, and an internal protocol.

A protocol has a read() method and a write() method. The read() method converts bytes to pairs of Python
objects representing the keys and values. The write() method converts a pair of Python objects back to bytes.

The input protocol is used to read the bytes sent to the first mapper (or reducer, if your first step doesn’t use a mapper).
The output protocol is used to write the output of the last step to bytes written to the output file. The internal protocol
converts the output of one step to the input of the next if the job has more than one step.

You can specify which protocols your job uses like this:

class MyMRJob(mrjob.job.MRJob):

these are the defaults
INPUT_PROTOCOL = mrjob.protocol.RawValueProtocol

14 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

INTERNAL_PROTOCOL = mrjob.protocol.JSONProtocol
OUTPUT_PROTOCOL = mrjob.protocol.JSONProtocol

The default input protocol is RawValueProtocol, which just reads in a line as a str. (The line won’t have a
trailing newline character because MRJob strips it.) So by default, the first step in your job sees (None, line) for
each line of input 3.

The default output and internal protocols are both JSONProtocol 4, which reads and writes JSON strings separated
by a tab character. (By default, Hadoop Streaming uses the tab character to separate keys and values within one line
when it sorts your data.)

If your head hurts a bit, think of it this way: use RawValueProtocol when you want to read or write lines of raw
text. Use JSONProtocol when you want to read or write key-value pairs where the key and value are JSON-enoded
bytes.

Note: Hadoop Streaming does not understand JSON, or mrjob protocols. It simply groups lines by doing a string
comparison on whatever comes before the first tab character.

See mrjob.protocol for the full list of protocols built-in to mrjob.

Data flow walkthrough by example

Let’s revisit our example from Multi-step jobs. It has two steps and takes a plain text file as input.

class MRMostUsedWord(MRJob):

def steps(self):
return [

MRStep(mapper=self.mapper_get_words,
combiner=self.combiner_count_words,
reducer=self.reducer_count_words),

MRStep(reducer=self.reducer_find_max_word)
]

The first step starts with mapper_get_words():

def mapper_get_words(self, _, line):
yield each word in the line
for word in WORD_RE.findall(line):

yield (word.lower(), 1)

Since the input protocol is RawValueProtocol, the key will always be None and the value will be the text of the
line.

The function discards the key and yields (word, 1) for each word in the line. Since the internal protocol is
JSONProtocol, each component of the output is serialized to JSON. The serialized components are written to
stdout separated by a tab character and ending in a newline character, like this:

"mrjob" 1
"is" 1
"a" 1
"python" 1

3 Experienced Pythonistas might notice that a str is a bytestring on Python 2, but Unicode on Python 3. That’s right! RawValueProtocol
is an alias for one of two different protocols depending on your Python version.

4 JSONProtocol is an alias for one of four different implementations; we try to use the (much faster) ujson library if it is available, and if
not, rapidjson or simplejson before falling back to the built-in json implementation.

1.4. Writing jobs 15

http://docs.python.org/2/library/json.html#module-json

mrjob Documentation, Release 0.7.4

The next two parts of the step are the combiner and reducer:

def combiner_count_words(self, word, counts):
sum the words we've seen so far
yield (word, sum(counts))

def reducer_count_words(self, word, counts):
send all (num_occurrences, word) pairs to the same reducer.
num_occurrences is so we can easily use Python's max() function.
yield None, (sum(counts), word)

In both cases, bytes are deserialized into (word, counts) by JSONProtocol, and the output is serialized as
JSON in the same way (because both are followed by another step). It looks just like the first mapper output, but the
results are summed:

"mrjob" 31
"is" 2
"a" 2
"Python" 1

The final step is just a reducer:

discard the key; it is just None
def reducer_find_max_word(self, _, word_count_pairs):

each item of word_count_pairs is (count, word),
so yielding one results in key=counts, value=word
yield max(word_count_pairs)

Since all input to this step has the same key (None), a single task will get all rows. Again, JSONProtocol will
handle deserialization and produce the arguments to reducer_find_max_word().

The output protocol is also JSONProtocol, so the final output will be:

31 "mrjob"

And we’re done! But that’s a bit ugly; there’s no need to write the key out at all. Let’s use JSONValueProtocol
instead, so we only see the JSON-encoded value:

class MRMostUsedWord(MRJob):

OUTPUT_PROTOCOL = JSONValueProtocol

Now we should have code that is identical to examples/mr_most_used_word.py in mrjob’s source code. Let’s
try running it (-q prevents debug logging):

$ python mr_most_used_word.py README.txt -q
"mrjob"

Hooray!

Specifying protocols for your job

Usually, you’ll just want to set one or more of the class variables INPUT_PROTOCOL, INTERNAL_PROTOCOL, and
OUTPUT_PROTOCOL:

class BasicProtocolJob(MRJob):

get input as raw strings
INPUT_PROTOCOL = RawValueProtocol

16 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

pass data internally with pickle
INTERNAL_PROTOCOL = PickleProtocol
write output as JSON
OUTPUT_PROTOCOL = JSONProtocol

If you need more complex behavior, you can override input_protocol(), internal_protocol(), or
output_protocol() and return a protocol object instance. Here’s an example that sneaks a peek at Defining
command line options:

class CommandLineProtocolJob(MRJob):

def configure_args(self):
super(CommandLineProtocolJob, self).configure_args()
self.add_passthru_arg(

'--output-format', default='raw', choices=['raw', 'json'],
help="Specify the output format of the job")

def output_protocol(self):
if self.options.output_format == 'json':

return JSONValueProtocol()
elif self.options.output_format == 'raw':

return RawValueProtocol()

Finally, if you need to use a completely different concept of protocol assignment, you can override
pick_protocols():

class WhatIsThisIDontEvenProtocolJob(MRJob):

def pick_protocols(self, step_num, step_type):
return random.choice([Protocololol, ROFLcol, Trolltocol, Locotorp])

Writing custom protocols

A protocol is an object with methods read(self, line) and write(self, key, value). The read()
method takes a bytestring and returns a 2-tuple of decoded objects, and write() takes the key and value and returns
bytes to be passed back to Hadoop Streaming or as output.

Protocols don’t have to worry about adding or stripping newlines; this is handled automatically by MRJob.

Here is a simplified version of mrjob’s JSON protocol:

import json

class JSONProtocol(object):

def read(self, line):
k_str, v_str = line.split('\t', 1)
return json.loads(k_str), json.loads(v_str)

def write(self, key, value):
return '%s\t%s' % (json.dumps(key), json.dumps(value))

You can improve performance significantly by caching the serialization/deserialization results of keys. Look at the
source code of mrjob.protocol for an example.

1.4. Writing jobs 17

mrjob Documentation, Release 0.7.4

1.4.3 Passing entire files to the mapper

New in version 0.6.3.

Sometimes you need to read binary data (e.g. image files), or text-based data that has records longer than one line.

By using mapper_raw(), you can pass entire files to your mapper, and read them however you want. Each mapper
gets one file, and is passed both the path of a local copy of the file, and the URI where the original file is located on
Hadoop’s filesystem.

For example, if you want to read .wet files from Common Crawl data, you could handle them like this:

class MRCrawler(MRJob):

def mapper_raw(self, wet_path, wet_uri):
from warcio.archiveiterator import ArchiveIterator

with open(wet_path, 'rb') as f:
for record in ArchiveIterator(f):

...

To use a library like warcio, you’ll need to ensure that it gets installed on your cluster. See Using a virtualenv for
one way to do this.

Under the hood, mrjob is passes an input manifest (a list of URIs of input files) to Hadoop, and instructs Hadoop to
send one line to each mapper. In most cases, this should be seamless, even to the point of telling you which file was
being read when a task fails.

Warning: For all runners except EMR, mrjob uses hadoop fs to download files to the local filesystem, which
means Hadoop has to invoke itself. If your cluster has tightly tuned memory requirements, this can sometimes
cause an out-of-memory error.

1.4.4 Jar steps

You can run Java directly on Hadoop (bypassing Hadoop Streaming) by using JarStep instead of MRStep().

For example, on EMR you can use a jar to run a script:

from mrjob.job import MRJob
from mrjob.step import JarStep

class ScriptyJarJob(MRJob):

def steps(self):
return [JarStep(

jar='s3://elasticmapreduce/libs/script-runner/script-runner.jar',
args=['s3://my_bucket/my_script.sh'])]

More interesting is combining MRStep and JarStep in the same job. Use mrjob.step.INPUT and
mrjob.step.OUTPUT in args to stand for the input and output paths for that step. For example:

class NaiveBayesJob(MRJob):

def steps(self):
return [

MRStep(mapper=self.mapper, reducer=self.reducer),
JarStep(

jar='elephant-driver.jar',

18 Chapter 1. Guides

http://commoncrawl.org/

mrjob Documentation, Release 0.7.4

args=['naive-bayes', INPUT, OUTPUT]
)

]

Changed in version 0.6.6: mrjob no longer passes hadoop generic args (-D and -libjars) to JarSteps. If you want
them, add mrjob.step.GENERIC_ARGS to your JarStep‘s args, and mrjob will automatically interpolate them.

JarStep has no concept of Protocols. If your jar reads input from a MRStep, or writes input read by another
MRStep, it is up to those steps to read and write data in the format your jar expects.

If you are writing the jar yourself, the easiest solution is to have it read and write mrjob’s default protocol (lines
containing two JSONs, separated by a tab).

If you are using a third-party jar, you can set custom protocols for the steps before and after it by overriding
pick_protocols().

Warning: If the first step of your job is a JarStep and you pass in multiple input paths, mrjob will replace
INPUT with the input paths joined together with a comma. Not all jars can handle this!
Best practice in this case is to put all your input into a single directory and pass that as your input path.

1.4.5 Using other python modules and packages

New in version 0.6.4.

If you want to run Python code outside of the file containing your MRJob, you’ll to make sure that code gets uploaded
to Hadoop.

The easiest way to do this is with by setting the DIRS attribute in your job. Put the code you want to import in one or
more packages (directories with an __init__.py file), and point DIRS at them:

class MRPackageUsingJob(MRJob):

DIRS = ['mycode', '../someothercode']

...

And then import code from inside a mapper or reducer:

def mapper(self, key, value):
from mycode.custom import important_business_logic
from someotherlibrary import util_function
...

(If you want to import code from the top level of your script rather than inside a method, make sure it’s in your
PYTHONPATH, just like with any other code.)

DIRS is relative to the directory your script is in (not the current working directory). This works inside Hadoop
because the current working directory is the same as the directory your script is in.

If you want to access individual Python modules or other support code, you can use FILES to upload them to your
job’s working directory inside Hadoop:

class MRFileUsingJob(MRJob):

FILES = ['mymodule.py', '../data/zipcodes.db']

def mapper(self, key, value):
from mymodule import open_zipcode_db

1.4. Writing jobs 19

mrjob Documentation, Release 0.7.4

with open_zipcode_db('zipcodes.db') as db:
...

For jobs with more complex dependencies (e.g. code that needs to be compiled), you may need to use the setup option.
See Job Environment Setup Cookbook for more information.

1.4.6 Defining command line options

Recall from How your program is run that your script is executed in several contexts: once for the initial invoca-
tion, and once for each task. If you just add an option to your job’s option parser, that option’s value won’t be
propagated to other runs of your script. Instead, you can use mrjob’s option API: add_passthru_arg() and
add_file_arg().

Passthrough options

A passthrough option is an argparse option that mrjob is aware of. mrjob inspects the value of the option when
you invoke your script and reproduces that value when it invokes your script in other contexts. The command line-
switchable protocol example from before uses this feature:

class CommandLineProtocolJob(MRJob):

def configure_args(self):
super(CommandLineProtocolJob, self).configure_args()
self.add_passthru_arg(

'--output-format', default='raw', choices=['raw', 'json'],
help="Specify the output format of the job")

def output_protocol(self):
if self.options.output_format == 'json':

return JSONValueProtocol()
elif self.options.output_format == 'raw':

return RawValueProtocol()

When you run your script with --output-format=json, mrjob detects that you passed --output-format
on the command line. When your script is run in any other context, such as on Hadoop, it adds
--output-format=json to its command string.

add_passthru_arg() takes the same arguments as argparse.ArgumentParser.add_argument(). For
more information, see the argparse docs.

Passing through existing options

Occasionally, it’ll be useful for mappers, reducers, etc. to be able to see the value of other command-line options. For
this, use pass_arg_through() with the corresponding command-line switch.

For example, you might wish to fetch supporting data for your job from different locations, depending on whether
your job is running on EMR or locally:

class MRRunnerAwareJob(MRJob):

def configure_args(self):
super(MRRunnerAwareJob, self).configure_args()

self.pass_arg_through('--runner')

20 Chapter 1. Guides

http://docs.python.org/2/library/argparse.html#module-argparse
http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser.add_argument
http://docs.python.org/library/argparse.html

mrjob Documentation, Release 0.7.4

def mapper_init(self):
if self.options.runner == 'emr':

self.data = ... # load from S3
else:

self.data = ... # load from local FS

Note: Keep in mind that self.options.runner (and the values of most options) will be None unless the user
explicitly set them with a command-line switch.

File options

A file option is like a passthrough option, but:

1. Its value must be a string or list of strings (action="store" or action="append"), where each string
represents either a local path, or an HDFS or S3 path that will be accessible from the task nodes.

2. That file will be downloaded to each task’s local directory and the value of the option will magically be changed
to its path.

For example, if you had a map task that required a sqlite3 database, you could do this:

class SqliteJob(MRJob):

def configure_args(self):
super(SqliteJob, self).configure_args()
self.add_file_arg('--database')

def mapper_init(self):
make sqlite3 database available to mapper
self.sqlite_conn = sqlite3.connect(self.options.database)

You could call it any of these ways, depending on where the file is:

$ python sqlite_job.py -r local --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r hadoop --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r hadoop --database=hdfs://my_dir/my_db.sqlite3
$ python sqlite_job.py -r emr --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r emr --database=s3://my_bucket/my_db.sqlite3

In any of these cases, when your task runs, my_db.sqlite3 will always be available in the task’s working directory,
and the value of self.options.database will always be set to its path.

See Making files available to tasks if you want to upload a file to your tasks’ working directories without writing a
custom command line option.

Warning: You must wait to read files until after class initialization. That means you should use the *_init()
methods to read files. Trying to read files into class variables will not work.

1.4.7 Counters

Hadoop lets you track counters that are aggregated over a step. A counter has a group, a name, and an integer value.
Hadoop itself tracks a few counters automatically. mrjob prints your job’s counters to the command line when your
job finishes, and they are available to the runner object if you invoke it programmatically.

To increment a counter from anywhere in your job, use the increment_counter() method:

1.4. Writing jobs 21

http://docs.python.org/2/library/sqlite3.html#module-sqlite3

mrjob Documentation, Release 0.7.4

class MRCountingJob(MRJob):

def mapper(self, _, value):
self.increment_counter('group', 'counter_name', 1)
yield _, value

At the end of your job, you’ll get the counter’s total value:

group:
counter_name: 1

1.4.8 Input and output formats

Input and output formats are Java classes that determine how your job interfaces with data on Hadoop’s filesystem(s).

Suppose we wanted to write a word frequency count job that wrote output into a separate directory based on
the first letter of the word counted (a/part-*, b/part-*, etc.). We could accomplish this by using the
MultipleValueOutputFormat class from the Open Source project nicknack.

First, we need to tell our job to use the custom output format by setting HADOOP_OUTPUT_FORMAT in our job class:

HADOOP_OUTPUT_FORMAT = 'nicknack.MultipleValueOutputFormat'

The output format class is part of a custom JAR, so we need to make sure that this JAR gets included in Hadoop’s
classpath. First download the jar to the same directory as your script, and add its name to LIBJARS:

LIBJARS = ['nicknack-1.0.0.jar']

(You can skip this step if you’re using a format class that’s built into Hadoop.)

Finally, output your data the way that your output format expects. MultipleValueOutputFormat expects the
subdirectory name, followed by a tab, followed the actual line to write into the file.

First, we need to take direct control of how the job writes output by setting OUTPUT_PROTOCOL to
RawValueProtocol:

OUTPUT_PROTOCOL = RawValueProtocol

Then we need to format the line accordingly. In this case, let’s continue output our final data in the standard format
(two JSONs separated by a tab):

def reducer(self, word, counts):
total = sum(counts)
yield None, '\t'.join([word[0], json.dumps(word), json.dumps(total)])

Done! Here’s the full, working job (this is mrjob.examples.mr_nick_nack):

import json
import re

from mrjob.job import MRJob
from mrjob.protocol import RawValueProtocol

WORD_RE = re.compile(r"[A-Za-z]+")

class MRNickNack(MRJob):

HADOOP_OUTPUT_FORMAT = 'nicknack.MultipleValueOutputFormat'

22 Chapter 1. Guides

http://empiricalresults.github.io/nicknack/
https://github.com/empiricalresults/nicknack/releases/download/v1.0.0/nicknack-1.0.0.jar

mrjob Documentation, Release 0.7.4

LIBJARS = ['nicknack-1.0.0.jar']

OUTPUT_PROTOCOL = RawValueProtocol

def mapper(self, _, line):
for word in WORD_RE.findall(line):

yield (word.lower(), 1)

def reducer(self, word, counts):
total = sum(counts)
yield None, '\t'.join([word[0], json.dumps(word), json.dumps(total)])

if __name__ == '__main__':
MRNickNack.run()

Input formats work the same way; just set HADOOP_INPUT_FORMAT. (You usually won’t need to set
INPUT_PROTOCOL because it already defaults to RawValueProtocol.)

1.5 Runners

While the MRJob class is the part of the framework that handles the execution of your code in a MapReduce context,
the runner is the part that packages and submits your job to be run, and reporting the results back to you.

In most cases, you will interact with runners via the command line and configuration files. When you invoke mrjob via
the command line, it reads your command line options (the --runner parameter) to determine which type of runner
to create. Then it creates the runner, which reads your configuration files and command line args and starts your job
running in whatever context you chose.

Most of the time, you won’t have any reason to construct a runner directly. Instead you’ll invoke your Python
script on the command line and it will make a runner automatically or you’ll write some sort of wrapper that calls
my_job.make_runner().

Internally, the general order of operations is:

• Get a runner by calling make_runner() on your job

• Call run() on your runner. This will:

– Copy your job and supporting files to Hadoop

– Instruct Hadoop to run your job with the appropriate --mapper, --combiner, --reducer, and
--step-num arguments

Each runner runs a single job once; if you want to run a job multiple times, make multiple runners.

Subclasses: DataprocJobRunner, EMRJobRunner, HadoopJobRunner, InlineMRJobRunner,
LocalMRJobRunner

1.5.1 Testing locally

To test the job locally, just run:

python your_mr_job_sub_class.py < log_file_or_whatever > output

The script will automatically invoke itself to run the various steps, using InlineMRJobRunner
(--runner=inline). If you want to simulate Hadoop more closely, you can use --runner=local, which

1.5. Runners 23

mrjob Documentation, Release 0.7.4

doesn’t add your working directory to the PYTHONPATH, sets a few Hadoop environment variables, and uses multiple
subprocesses for tasks.

You can also run individual steps:

test 1st step mapper:
python your_mr_job_sub_class.py --mapper
test 2nd step reducer (step numbers are 0-indexed):
python your_mr_job_sub_class.py --reducer --step-num=1

By default, we read from stdin, but you can also specify one or more input files. It automatically decompresses .gz
and .bz2 files:

python your_mr_job_sub_class.py log_01.gz log_02.bz2 log_03

See mrjob.examples for more examples.

1.5.2 Running on your own Hadoop cluster

• Set up a hadoop cluster (see http://hadoop.apache.org/docs/current/)

• Run your job with -r hadoop:

python your_mr_job_sub_class.py -r hadoop < input > output

Note: You don’t need to install mrjob or any other libraries on the nodes of your Hadoop cluster, but they do at least
need a version of Python that’s compatible with your job.

1.5.3 Running on EMR

• Set up your Amazon account and credentials (see Configuring AWS credentials)

• Run your job with -r emr:

python your_mr_job_sub_class.py -r emr < input > output

1.5.4 Running on Dataproc

• Set up your Google account and credentials (see Getting started with Google Cloud)

• Run your job with -r dataproc:

python your_mr_job_sub_class.py -r dataproc < input > output

Note: Dataproc does not yet support Spark or libjars.

1.5.5 Configuration

Runners are configured by several methods:

• from mrjob.conf (see Config file format and location)

• from the command line

• by re-defining job_runner_kwargs() etc in your MRJob (see Job runner configuration)

24 Chapter 1. Guides

http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH
http://hadoop.apache.org/docs/current/

mrjob Documentation, Release 0.7.4

• by instantiating the runner directly

In most cases, you should put all configuration in mrjob.conf and use the command line args or class variables to
customize how individual jobs are run.

1.5.6 Running your job programmatically

It is fairly common to write an organization-specific wrapper around mrjob. Use make_runner() to run an MRJob
from another Python script. The context manager guarantees that all temporary files are cleaned up regardless of the
success or failure of your job.

This pattern can also be used to write integration tests (see Testing jobs).

mr_job = MRWordCounter(args=['-r', 'emr'])
with mr_job.make_runner() as runner:

runner.run()
for key, value in mr_job.parse_output(runner.cat_output()):

... # do something with the parsed output

You instantiate the MRJob, use a context manager to create the runner, run the job, and cat its output, parsing that
output with the job’s output protocol.

Further reference:

• make_runner()

• run()

• parse_output()

• cat_output()

Limitations

Note: You should pay attention to the next sentence.

You cannot use the programmatic runner functionality in the same file as your job class. As an example of what
not to do, here is some code that does not work.

Warning: The code below shows you what not to do.

from mrjob.job import MRJob

class MyJob(MRJob):
(your job)

no, stop, what are you doing?!?!
mr_job = MyJob(args=[args])
with mr_job.make_runner() as runner:

runner.run()
... etc

What you need to do instead is put your job in one file, and your run code in another. Here are two files that would
correctly handle the above case.

1.5. Runners 25

mrjob Documentation, Release 0.7.4

job.py
from mrjob.job import MRJob

class MyJob(MRJob):
(your job)

if __name__ == '__main__':
MyJob.run()

run.py
from job import MyJob
mr_job = MyJob(args=[args])
with mr_job.make_runner() as runner:

runner.run()
... etc

Why can’t I put the job class and run code in the same file?

The file with the job class is sent to Hadoop to be run. Therefore, the job file cannot attempt to start the Hadoop job,
or you would be recursively creating Hadoop jobs!

The code that runs the job should only run outside of the Hadoop context.

The if __name__ == ’__main__’ block is only run if you invoke the job file as a script. It is not run when
imported. That’s why you can import the job class to be run, but it can still be invoked as an executable.

Counters

Counters may be read through the counters() method on the runner. The example below demonstrates the use of
counters in a test case.

mr_counting_job.py

from mrjob.job import MRJob
from mrjob.step import MRStep

class MRCountingJob(MRJob):

def steps(self):
3 steps so we can check behavior of counters for multiple steps
return [MRStep(self.mapper),

MRStep(self.mapper),
MRStep(self.mapper)]

def mapper(self, _, value):
self.increment_counter('group', 'counter_name', 1)
yield _, value

if __name__ == '__main__':
MRCountingJob.run()

test_counters.py

26 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

from io import BytesIO
from unittest import TestCase

from tests.mr_counting_job import MRCountingJob

class CounterTestCase(TestCase):

def test_counters(self):
stdin = BytesIO(b'foo\nbar\n')

mr_job = MRCountingJob(['--no-conf', '-'])
mr_job.sandbox(stdin=stdin)

with mr_job.make_runner() as runner:
runner.run()

self.assertEqual(runner.counters(),
[{'group': {'counter_name': 2}},
{'group': {'counter_name': 2}},
{'group': {'counter_name': 2}}])

1.6 Spark

1.6.1 Why use mrjob with Spark?

mrjob augments Spark‘s native Python support with the following features familiar to users of mrjob:

• automatically upload input and other support files to HDFS, GCS, or S3 (see upload_files, upload_archives, and
py_files)

• run make and other command before running Spark tasks (see setup).

• passthrough and file arguments (see Defining command line options)

• automatically parse logs to explain errors and other Spark job failures

• easily pass through environment variables (see cmdenv)

• support for libjars

• automatic matching of Python version (see python_bin)

• automatically set up Spark on EMR (see bootstrap_spark)

• automatically making the mrjob library available to your job (see bootstrap_mrjob)

1.6.2 mrjob spark-submit

If you already have a Spark script written, the easiest way to access mrjob’s features is to run your job with mrjob
spark-submit, just like you would normally run it with spark-submit. This can, for instance, make running a
Spark job on EMR as easy as running it locally, or allow you to access features (e.g. setup) not natively supported by
Spark.

For more details, see mrjob spark-submit.

1.6. Spark 27

http://spark.apache.org/

mrjob Documentation, Release 0.7.4

1.6.3 Writing your first Spark MRJob

Another way to integrate mrjob with Spark is to add a spark() method to your MRJob class, and put your Spark
code inside it. This will allow you to access features only availble to MRJobs (e.g. FILES).

Here’s how you’d implement a word frequency count job in Spark:

import re
from operator import add

from mrjob.job import MRJob

WORD_RE = re.compile(r"[\w']+")

class MRSparkWordcount(MRJob):

def spark(self, input_path, output_path):
Spark may not be available where script is launched
from pyspark import SparkContext

sc = SparkContext(appName='mrjob Spark wordcount script')

lines = sc.textFile(input_path)

counts = (
lines.flatMap(self.get_words)
.map(lambda word: (word, 1))
.reduceByKey(add))

counts.saveAsTextFile(output_path)

sc.stop()

def get_words(self, line):
return WORD_RE.findall(line)

if __name__ == '__main__':
MRSparkWordcount.run()

Since Spark already supports Python, mrjob takes care of setting up your cluster, passes in input and output paths, and
otherwise gets out of the way. If you pass in multiple input paths, input_path will be these paths joined by a comma
(SparkContext.textFile() will accept this).

Note that pyspark is imported inside the spark() method. This allows your job to run whether pyspark is
installed locally or not.

The spark() method can be used to execute arbitrary code, so there’s nothing stopping you from using SparkSession
instead of SparkContext in Spark 2, or writing a streaming-mode job rather than a batch one.

Warning: Prior to v0.6.8, to pass job methods into Spark (e.g. rdd.flatMap(self.get_words)), you first
had to call self.sandbox(); otherwise Spark would error because self was not serializable.

28 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

1.6.4 Running on your Spark cluster

By default, mrjob runs your job on the inline runner (see below). If you want to run your job on your own Spark
cluster, run it with -r spark:

Use --spark-master (see spark_master) to control where your job runs.

You can pass in spark options with -D (see jobconf) and set deploy mode (client or cluster) with
--spark-deploy-mode. If you need to pass other arguments to spark-submit, use spark_args.

The Spark runner can also run “classic” MRJobs (i.e. those made by defining mapper() etc. or with MRSteps)
directly on Spark, allowing you to move off Hadoop without rewriting your jobs. See below for details.

Warning: If you don’t set spark_master, your job will run on Spark’s default local[*] master, which can’t
handle setup scripts or --files because it doesn’t give tasks their own working directory.

Note: mrjob needs to know what master and deploy mode you’re using, so it will override attempts to set spark master
or deploy mode through jobconf (e.g. -D spark.master=...).

1.6.5 Using remote filesystems other than HDFS

By default, if you use a remote Spark master (i.e. not local or local-cluster), Spark will assume you want to
use HDFS for your job’s temp space, and that you will want to access it through hadoop fs.

Some Spark installations don’t use HDFS at all. Fortunately, the Spark runner also supports S3 and
GCS. Use spark_tmp_dir to specify a remote temp directory not on HDFS (e.g. --spark-tmp-dir
s3a://bucket/path).

For more information on accessing S3 or GCS, see Configuring AWS credentials (S3) or Configuring Google Cloud
credentials (GCS).

1.6.6 Other ways to run on Spark

Inline runner

Running your Spark job with -r inline (the default) will launch it directly through the pyspark library, ef-
fectively running it on the local[*] master. This is convenient for debugging because exceptions will bubble up
directly to your Python process.

The inline runner also builds a simulated working directory for your job, making it possible to test scripts that rely on
certain files being in the working directory (it doesn’t run setup scripts).

Note: If you don’t have a local Spark installation, the pyspark library on PyPI is a pretty quick way to get one (pip
install pyspark).

Local runner

Running your Spark job with -r local will launch it through spark-submit on a local-cluster master.
local-cluster is designed to simulate a real Spark cluster, so setup will work as expected.

By default, the local runner launches Spark jobs with as many executors as your system has CPUs. Use
--num-cores (see num_cores to change this).

1.6. Spark 29

mrjob Documentation, Release 0.7.4

By default, the local runner gives each executor 1 GB of memory. If you need more, you can specify it through
jobconf, e.g. -D spark.core.memory=4g.

EMR runner

Running your Spark job with -r emr will launch it in Amazon Elastic MapReduce (EMR), with the same seamless
integration and features mrjob provides for Hadoop jobs on EMR.

The EMR runner will always run your job on the yarn Spark master in cluster deploy mode.

Hadoop runner

Running your Spark job with -r hadoop will launch it on your own Hadoop cluster. This is not significantly
different than the Spark runner. The main advantage of the Hadoop runner is that is has more knowledge about how to
find logs and can be better at finding the relevant error if your job fails.

Unlike the Spark runner, the Hadoop runner’s default spark master is yarn.

Note: mrjob does not yet support Spark on Google Cloud Dataproc.

1.6.7 Passing in libraries

Use --py-files to pass in .zip or .egg files full of Python code:

python your_mr_spark_job -r hadoop --py-files lib1.zip,lib2.egg

Or set py_files in mrjob.conf.

1.6.8 Command-line options

Command-line options (passthrough options, etc) work exactly like they do with regular streaming jobs (even
add_file_arg() on the local[*] Spark master. See Defining command line options.

1.6.9 Uploading files to the working directory

upload_files, FILES, and files uploaded via setup scripts all should work as expected (except on local masters
because there is no working directory).

Note that you can give files a different name in the working directory (e.g. --files foo#bar) on all Spark
masters, even though Spark treats that as a YARN-specific feature.

1.6.10 Archives and directories

Spark treats --archives as a YARN-specific feature. This means that upload_archives, ARCHIVES, DIRS, etc.
will be ignored on non-yarn Spark masters.

Future versions of mrjob may simulate archives on non-yarn masters using a setup script.

30 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

1.6.11 Multi-step jobs

There generally isn’t a need to define multiple Spark steps (Spark lets you map/reduce as many times as you want).
However, it may sometimes be useful to pre- or post-process Spark data using a streaming or jar step.

This is accomplished by overriding your job’s steps() method and using the SparkStep class:

def steps():
return [

MRStep(mapper=self.preprocessing_mapper),
SparkStep(spark=self.spark),

]

1.6.12 External Spark scripts

mrjob can also be used to launch external (non-mrjob) Spark scripts using the SparkScriptStep class, which
specifies the path (or URI) of the script and its arguments.

As with JarSteps, you can interpolate input and output paths using INPUT and OUTPUT constants. For example,
you could set your job’s steps() method up like this:

def steps():
return [

SparkScriptStep(
script=os.path.join(

os.path.dirname(__file__), 'my_spark_script.py'),
args=[INPUT, '-o', OUTPUT, '--other-switch'],

),
]

1.6.13 Custom input and output formats

mrjob allows you to use input and output formats from custom JARs with Spark, just like you can with streaming jobs.

First download your JAR to the same directory as your job, and add it to your job class with the LIBJARS attribute:

LIBJARS = ['nicknack-1.0.0.jar']

Then use Spark’s own capabilities to reference your input or output format, keeping in mind the data types they expect.

For example, nicknack’s MultipleValueOutputFormat expects <Text,Text>, so if we wanted to integrate
it with our wordcount example, we’d have to convert the count to a string:

def spark(self, input_path, output_path):
from pyspark import SparkContext

sc = SparkContext(appName='mrjob Spark wordcount script')

lines = sc.textFile(input_path)

counts = (
lines.flatMap(self.get_words
.map(lambda word: (word, 1))
.reduceByKey(add))

MultipleValueOutputFormat expects Text, Text
w_c is (word, count)

1.6. Spark 31

https://github.com/empiricalresults/nicknack/releases/download/v1.0.0/nicknack-1.0.0.jar

mrjob Documentation, Release 0.7.4

counts = counts.map(lambda w_c: (w_c[0], str(w_c[1])))

counts.saveAsHadoopFile(output_path,
'nicknack.MultipleValueOutputFormat')

sc.stop()

1.6.14 Running “classic” MRJobs on Spark

The Spark runner provides near-total support for running “classic” MRJobs (the sort described in Writing your first
job and Writing your second job) directly on any Spark installation, even though these jobs were originally designed
to run on Hadoop Streaming. Support includes:

• *_init() and *_final() methods

• HADOOP_INPUT_FORMAT and HADOOP_OUTPUT_FORMAT

• SORT_VALUES

• passthrough arguments

• increment_counter()

Jobs will often run more quickly on Spark than Hadoop Streaming, so it’s worth trying even if you don’t plan to move
off Hadoop in the forseeable future.

Multiple steps are run as a single job

If you have a job with multiple consecutive MRSteps, the Spark runner will run them all as a single Spark job. This is
usually what you want (more efficient), but it can make debugging slightly more challenging (step failure exceptions
give a range of steps, no way to access intermediate data).

To force the Spark runner to run steps separately, you can initialize each MRStepwith a different jobconf dictionary.

No support for subprocesses

Pre-filters (e.g. mapper_pre_filter()) and command steps (e.g. reducer_cmd()) are not supported because
they require launching subprocesses.

It wouldn’t be impossible to emulate this inside Spark, but then we’d essentially be turning Spark into Hadoop Stream-
ing. (If you have a use case for this seemingly implausible feature, let us know through GitHub.)

Spark loves combiners

Hadoop’s “reduce” paradigm is a lot more heavyweight than Spark’s; whereas a Spark reducer just wants to know how
to combine two values into one, a Hadoop reducer expects to be able to see all the values for a given key, and to emit
zero or more key-value pairs.

In fact, Spark reducers are a lot more like Hadoop combiners. The Spark runner knows how to translate something
like:

def combiner(self, key, values):
yield key, sum(values)

32 Chapter 1. Guides

https://github.com/Yelp/mrjob/issues

mrjob Documentation, Release 0.7.4

into Spark’s reduce paradigm–basically it’ll pass your combiner two values at a time, and hope it emits one. If your
combiner does not behave like a Spark reducer function (emitting multiple or zero values), the Spark runner handles
that gracefully as well.

Counter emulation is almost perfect

Counters (see increment_counter()) are a feature specific to Hadoop. mrjob emulates them on Spark anyway.
If you have a multi-step job, mrjob will dutifully print out counters for each step and make them available through
counters().

The only drawback is that while Hadoop has the ability to “take back” counters produced by a failed task, there isn’t
a clean way to do this with Spark accumulators. Therefore, the counters produced by the Spark runner’s Hadoop
emulation may be overestimates.

Spark does not stream data

While Hadoop streaming (as its name implies) passes a stream of data to your job, Spark instead operates on partitions,
which are loaded into memory.

A reducer like this can’t run out of memory on Hadoop streaming, no matter how many values there are for key:

def reducer(self, key, values):
yield key, sum(values)

However, on Spark, simply storing the partition that contains these values can cause Spark to run out of memory.

If this happens, you can let Spark use more memory (-D spark.executor.memory=10g) or add a combiner to
your job.

Compression emulation

It’s fairly common for people to request compressed output from Hadoop via configuration properties, for example:

python mr_your_job.py -D mapreduce.output.fileoutputformat.compress=true -D\
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.BZip2Codec ...

This works with -r spark too; the Spark runner knows how to recognize these properties and pass the codec
specified to Spark when it writes output.

Spark won’t split .gz files either

A common trick on Hadoop to ensure that segments of your data don’t get split between mappers is to gzip each
segment (since .gz is not a seekable compression format).

This works on Spark as well.

Controlling number of output files

By default, Spark will write one output file per partition. This may give more output files than you expect, since
Hadoop and Spark are tuned differently.

The Spark runner knows how to emulate the Hadoop configuration property that sets number of reducers on Hadoop
(e.g. -D mapreduce.job.reduces=100), which will control the number of output files (assuming your last
step has a reducer).

1.6. Spark 33

mrjob Documentation, Release 0.7.4

However, this is a somewhat heavyweight solution; once Spark runs a step’s reducer, mrjob has to forbid Spark from
re-partitioning until the end of the step.

A lighter weight solution is --max-output-files, allows you to limit the number of output files by running
coalesce() just before writing output. Running your job with --max-output-files=100 would ensure it
produces no more than 100 output files (but it could output less).

Running classic MRJobs on Spark on EMR

It’s often faster to run classic MRJobs on Spark than Hadoop Streaming. It’s also convenient to be able to run on EMR
rather than setting up your own Spark cluster (or SSH’ing in).

Can you do both? Yes! Run the job with the Spark runner, but tell it to use mrjob spark-submit to launch Spark
jobs on EMR.

It looks something like this:

python mr_your_job.py -r spark \
--spark-submit-bin 'mrjob spark-submit -r emr' \
--spark-master yarn --spark-tmp-dir s3://your-bucket/tmp/ input1 input2

Note that because the Spark runner itself doesn’t know the job is going to run on EMR, you have to give it a couple
of hints so that it knows it’s running on YARN (--spark-master) and that it needs to use S3 as its temp space
(--spark-tmp-dir).

1.7 Config file format and location

We look for mrjob.conf in these locations:

• The location specified by MRJOB_CONF

• ~/.mrjob.conf

• /etc/mrjob.conf

You can specify one or more configuration files with the --conf-path flag. See Options available to all runners for
more information.

The point of mrjob.conf is to let you set up things you want every job to have access to so that you don’t have to
think about it. For example:

• libraries and source code you want to be available for your jobs

• where temp directories and logs should go

• security credentials

mrjob.conf is just a YAML- or JSON-encoded dictionary containing default values to pass in to the constructors
of the various runner classes. Here’s a minimal mrjob.conf:

runners:
emr:
cmdenv:

TZ: America/Los_Angeles

Now whenever you run mr_your_script.py -r emr, EMRJobRunner will automatically set TZ to
America/Los_Angeles in your job’s environment when it runs on EMR.

If you don’t have the yaml module installed, you can use JSON in your mrjob.conf instead (JSON is a subset of
YAML, so it’ll still work once you install yaml). Here’s how you’d render the above example in JSON:

34 Chapter 1. Guides

http://www.yaml.org
http://www.json.org

mrjob Documentation, Release 0.7.4

{
"runners": {
"emr": {

"cmdenv": {
"TZ": "America/Los_Angeles"

}
}

}
}

1.7.1 Precedence and combining options

Options specified on the command-line take precedence over mrjob.conf. Usually this means simply overriding
the option in mrjob.conf. However, we know that cmdenv contains environment variables, so we do the right thing.
For example, if your mrjob.conf contained:

runners:
emr:
cmdenv:

PATH: /usr/local/bin
TZ: America/Los_Angeles

and you ran your job as:

mr_your_script.py -r emr --cmdenv TZ=Europe/Paris --cmdenv PATH=/usr/sbin

We’d automatically handle the PATH variables and your job’s environment would be:

{'TZ': 'Europe/Paris', 'PATH': '/usr/sbin:/usr/local/bin'}

What’s going on here is that cmdenv is associated with combine_envs(). Each option is associated with an
appropriate combiner function that that combines options in an appropriate way.

Combiner functions can also do useful things like expanding environment variables and globs in paths. For example,
you could set:

runners:
local:
upload_files: &upload_files
- $DATA_DIR/*.db

hadoop:
upload_files: *upload_files

emr:
upload_files: *upload_files

and every time you ran a job, every job in your .db file in $DATA_DIR would automatically be loaded into your job’s
current working directory.

Also, if you specified additional files to upload with --file, those files would be uploaded in addition to the .db
files, rather than instead of them.

See Configuration quick reference for the entire dizzying array of configurable options.

1.7.2 Option data types

The same option may be specified multiple times and be one of several data types. For example, the AWS region may
be specified in mrjob.conf, in the arguments to EMRJobRunner, and on the command line. These are the rules
used to determine what value to use at runtime.

1.7. Config file format and location 35

mrjob Documentation, Release 0.7.4

Values specified “later” refer to an option being specified at a higher priority. For example, a value in mrjob.conf
is specified “earlier” than a value passed on the command line.

When there are multiple values, they are “combined with” a combiner function. The combiner function for each data
type is listed in its description.

Simple data types

When these are specified more than once, the last non-None value is used.

String Simple, unchanged string. Combined with combine_values().

Command String containing all ASCII characters to be parsed with shlex.split(), or list of command + argu-
ments. Combined with combine_cmds().

Path Local path with ~ and environment variables (e.g. $TMPDIR) resolved. Combined with combine_paths().

List data types

The values of these options are specified as lists. When specified more than once, the lists are concatenated together.

String list List of strings. Combined with combine_lists().

Path list List of paths. Combined with combine_path_lists().

Strings and non-sequence data types (e.g. numbers) are treated as single-item lists.

For example,

runners:
emr:
setup: /run/some/command with args

is equivalent to:

runners:
emr:
setup:
- /run/some/command with args

Dict data types

The values of these options are specified as dictionaries. When specified more than once, each has custom behavior
described below.

Plain dict Values specified later override values specified earlier. Combined with combine_dicts().

JobConf Dicts

New in version 0.6.6: Like plain dicts except that non-string values are converted into a format that Java understands.
For example, the boolean value true here:

jobconf:
mapreduce.output.fileoutputformat.compress: true

gets passed through to Hadoop in Java format (true), not Python format (True).

Keys whose values are None are not passed to Hadoop at all.

36 Chapter 1. Guides

http://docs.python.org/2/library/shlex.html#shlex.split

mrjob Documentation, Release 0.7.4

Warning: Prior to version 0.6.6, you should use "true" and "false", for boolean jobconf values in config
files, not true and false.

Environment variable dict Values specified later override values specified earlier, except for those with keys end-
ing in PATH, in which values are concatenated and separated by a colon (:) rather than overwritten. The later
value comes first.

For example, this config:

runners:
emr:

cmdenv:
PATH: /usr/bin

when run with this command:

python my_job.py --cmdenv PATH=/usr/local/bin

will result in the following value of cmdenv:

/usr/local/bin:/usr/bin

The function that handles this is combine_envs().

The one exception to this behavior is in the local runner, which uses the local system separator (on Windows
;, on everything else still :) instead of always using :. In local mode, the function that combines config values
is combine_local_envs().

1.7.3 Using multiple config files

If you have several standard configurations, you may want to have several config files “inherit” from a base config file.
For example, you may have one set of AWS credentials, but two code bases and default instance sizes. To accomplish
this, use the include option:

~/mrjob.very-large.conf:

include: ~/.mrjob.base.conf
runners:
emr:
num_core_instances: 20
core_instance_type: m1.xlarge

~/mrjob.very-small.conf:

include: $HOME/.mrjob.base.conf
runners:
emr:
num_core_instances: 2
core_instance_type: m1.small

~/.mrjob.base.conf:

runners:
emr:
aws_access_key_id: HADOOPHADOOPBOBADOOP
aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
region: us-west-1

Options that are lists, commands, dictionaries, etc. combine the same way they do between the config files and the
command line (with combiner functions).

1.7. Config file format and location 37

mrjob Documentation, Release 0.7.4

You can use $ENVIRONMENT_VARIABLES and ~/file_in_your_home_dir inside include.

You can inherit from multiple config files by passing include a list instead of a string. Files on the right will have
precedence over files on the left. To continue the above examples, this config:

~/.mrjob.everything.conf

include:
- ~/.mrjob.very-small.conf
- ~/.mrjob.very-large.conf

will be equivalent to this one:

~/.mrjob.everything-2.conf

runners:
emr:
aws_access_key_id: HADOOPHADOOPBOBADOOP
aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
core_instance_type: m1.xlarge
num_core_instances: 20
region: us-west-1

In this case, ~/.mrjob.very-large.conf has taken precedence over ~/.mrjob.very-small.conf.

Relative includes

Relative include: paths are relative to the real (after resolving symlinks) path of the including conf file.

For example, you could do this:

~/.mrjob/base.conf:

runners:
...

~/.mrjob/default.conf:

include: base.conf

You could then load your configs via a symlink ~/.mrjob.conf to ~/.mrjob/default.conf and
~/.mrjob/base.conf would still be included (even though it’s not in the same directory as the symlink).

1.7.4 Clearing configs

Sometimes, you just want to override a list-type config (e.g. setup) or a *PATH environment variable, rather than
having mrjob cleverly concatenate it with previous configs.

You can do this in YAML config files by tagging the values you want to take precedence with the !clear tag.

For example:

~/.mrjob.base.conf

runners:
emr:
aws_access_key_id: HADOOPHADOOPBOBADOOP
aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
cmdenv:

PATH: /this/nice/path
PYTHONPATH: /here/be/serpents

38 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

USER: dave
setup:
- /run/this/command

~/.mrjob.conf

include: ~/mrjob.base.conf
runners:
emr:
cmdenv:

PATH: !clear /this/even/better/path/yay
PYTHONPATH: !clear

setup: !clear
- /run/this/other/command

is equivalent to:

runners:
emr:
aws_access_key_id: HADOOPHADOOPBOBADOOP
aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
cmdenv:

PATH: /this/even/better/path/yay
USER: dave

setup:
- /run/this/other/command

If you specify multiple config files (e.g. -c ~/mrjob.base.conf -c ~/mrjob.conf), a !clear in a later
file will override earlier files. include: is really just another way to prepend to the list of config files to load.

If you find it more readable, you may put the !clear tag before the key you want to clear. For example,

runners:
emr:
!clear setup:
- /run/this/other/command

is equivalent to:

runners:
emr:
setup: !clear
- /run/this/other/command

!clear tags in lists are ignored. You cannot currently clear an entire set of configs (e.g. runners: emr:
!clear ... does not work).

1.8 Options available to all runners

The format of each item in this document is:

mrjob_conf_option_name (--command-line-option-name) [option_type] Default: default value

Description of option behavior

Options that take multiple values can be passed multiple times on the command line. All options can be passed as
keyword arguments to the runner if initialized programmatically.

1.8. Options available to all runners 39

mrjob Documentation, Release 0.7.4

1.8.1 Making files available to tasks

Most jobs have dependencies of some sort - Python packages, Debian packages, data files, etc. This section covers
options available to all runners that mrjob uses to upload files to your job’s execution environments. See File options
if you want to write your own command line options related to file uploading.

Warning: You must wait to read files until after class initialization. That means you should use the *_init()
methods to read files. Trying to read files into class variables will not work.

bootstrap_mrjob (--bootstrap-mrjob, --no-bootstrap-mrjob) [boolean] Default: True

Should we automatically zip up the mrjob library and install it when we run job?

Set this to False if you’ve already installed mrjob on your Hadoop cluster or install it by some other method.

py_files (--py-files) [path list] Default: []

List of .egg or .zip files to add to your job’s PYTHONPATH.

This is based on a Spark feature, but it works just as well with streaming jobs.

Changed in version 0.6.7: Deprecated --py-file in favor of --py-files

upload_archives (--archives) [path list] Default: []

A list of archives (e.g. tarballs) to unpack in the local directory of the mr_job script when it runs. You can set the
name in the job’s working directory we unpack into by appending #nameinworkingdir to the path; other-
wise we just use the name of the archive file (e.g. foo.tar.gz is unpacked to the directory foo.tar.gz/,
and foo.tar.gz#stuff is unpacked to the directory stuff/).

Changed in version 0.6.7: Deprecated --archive in favor of --archives

upload_dirs (--dirs) [path list] Default: []

A list of directories to copy to the local directory of the mr_job script when it runs (mrjob does this by tarballing
the directory and submitting the tarball to Hadoop as an archive).

You can set the name in the job’s working directory of the directory we copy by appending
#nameinworkingdir to the path; otherwise we just use its name.

This works with Spark on YARN only.

Changed in version 0.6.7: Deprecated --dir in favor of --dirs

upload_files (--files) [path list] Default: []

Files to copy to the local directory of the mr_job script when it runs. You can set the name of the file in the
job’s working directory by appending #nameinworkingdir to the path; otherwise we just use the name of
the file.

In the config file:

upload_files:
- file_1.txt
- file_2.sqlite

On the command line:

--files file_1.txt,file_2.sqlite

Changed in version 0.6.8: In Spark, can use #nameinworkingdir even when not on YARN.

Changed in version 0.6.7: Deprecated --file in favor of --files

40 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

1.8.2 Temp files and cleanup

cleanup (--cleanup) [string] Default: ’ALL’

List of which kinds of directories to delete when a job succeeds. Valid choices are:

• ’ALL’: delete logs and local and remote temp files; stop cluster if on EMR and the job is
not done when cleanup is run.

• ’CLUSTER’: terminate EMR cluster if job not done when cleanup is run

• ’JOB’: stop job if not done when cleanup runs (temporarily disabled)

• ’LOCAL_TMP’: delete local temp files only

• ’LOGS’: delete logs only

• ’NONE’: delete nothing

• ’REMOTE_TMP’: delete remote temp files only

• ’TMP’: delete local and remote temp files, but not logs

In the config file:

cleanup: [LOGS, JOB]

On the command line:

--cleanup=LOGS,JOB

cleanup_on_failure (--cleanup-on-failure) [string] Default: ’NONE’

Which kinds of directories to clean up when a job fails. Valid choices are the same as cleanup.

local_tmp_dir (--local-tmp-dir) [path] Default: value of tempfile.gettempdir()

Alternate local temp directory.

--local-tmp-dir ’’ tells mrjob to ignore the config file and use the default temp directory
(tempfile.gettempdir())

Changed in version 0.6.6: Added –local-tmp-dir switch.

output_dir (--output-dir) [string] Default: (automatic)

An empty/non-existent directory where Hadoop streaming should put the final output from the job.
If you don’t specify an output directory, we’ll output into a subdirectory of this job’s temporary
directory. You can control this from the command line with --output-dir. This option cannot
be set from configuration files. If used with the hadoop runner, this path does not need to be fully
qualified with hdfs:// URIs because it’s understood that it has to be on HDFS.

cat_output (--cat-output, --no-cat-output) [boolean] Default: output if output_dir is not set

Should we stream job output to STDOUT after completion?

Changed in version 0.6.3: used to be --no-output.

step_output_dir (--step-output-dir) [string] Default: (automatic)

For a multi-step job, where to put output from job steps other than the last one. Each step’s output will go into
a numbered subdirectory of this one (0000/, 0001/, etc.)

This option can be useful for debugging. By default, intermediate output goes into HDFS, which is fastest but
not easily accessible on EMR or Dataproc.

This option currently does nothing on local and inline runners.

1.8. Options available to all runners 41

http://docs.python.org/2/library/tempfile.html#tempfile.gettempdir
http://docs.python.org/2/library/tempfile.html#tempfile.gettempdir

mrjob Documentation, Release 0.7.4

1.8.3 Job execution context

cmdenv (--cmdenv) [environment variable dict] Default: {}

Dictionary of environment variables to pass to the job inside Hadoop streaming.

In the config file:

cmdenv:
PYTHONPATH: $HOME/stuff
TZ: America/Los_Angeles

On the command line:

--cmdenv PYTHONPATH=$HOME/stuff,TZ=America/Los_Angeles

python_bin (--python-bin) [command] Default: (automatic)

Name/path of alternate Python binary for wrapper scripts and mappers/reducers (e.g. ’python -v’).

If you’re on Python 3, this always defaults to ’python3’.

If you’re on Python 2, this defaults to ’python2.7’.

If you’re using PyPy, this defaults to ’pypy’ (not ’pypy2.7’) or ’pypy3’ depending on your version.

This option also affects which Python binary is used for file locking in setup scripts. It’s also used by
EMRJobRunner to compile mrjob after bootstrapping it (see bootstrap_mrjob).

Changed in version 0.7.2: Defaults to ’python2.7’ (not ’python’) on Python 2.

Changed in version 0.6.10: added ’pypy’ and ’pypy3’ as possible defaults

Note: mrjob does not auto-install PyPy for you on EMR; see Installing PyPy for how to do this

setup (--setup) [string list] Default: []

A list of lines of shell script to run before each task (mapper/reducer).

This option is complex and powerful; the best way to get started is to read the Job Environment Setup Cookbook.

Using this option replaces your task with a shell “wrapper” script that executes the setup commands, and then
executes the task as the last line of the script. This means that environment variables set by hadoop (e.g.
$mapred_job_id) are available to setup commands, and that you can pass environment variables to the task
(e.g. $PYTHONPATH) using export.

We use file locking around the setup commands (not the task) to ensure that multiple tasks running on the same
node won’t run them simultaneously (it’s safe to run make). Before running the task, we cd back to the original
working directory.

In addition, passing expressions like path#name will cause path to be automatically uploaded to the task’s
working directory with the filename name, marked as executable, and interpolated into the script by its absolute
path on the machine running the script.

path may also be a URI, and ~ and environment variables within path will be resolved based on the local
environment. name is optional.

You can indicate that an archive should be unarchived into a directory by putting a / after name (e.g.
foo.tar.gz#foo/).

You can indicate that a directory should be copied into the job’s working directory by putting a / after path (e.g.
src-tree/#). You may optionally put a / after name as well (e.g. cd src-tree/#/subdir).

42 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

This works for Spark as well (except on the local[*] master, where it doesn’t make sense). The setup script
is run before every executor, but only run before the driver in cluster mode.

Note: Uploading archives and directories (e.g. src-tree/#) to Spark’s working directory still only works
on YARN.

Changed in version 0.6.8: added full support for Spark

Changed in version 0.6.7: added support for Spark on YARN only

For more details of parsing, see parse_setup_cmd().

sh_bin (--sh-bin) [command] Default: /bin/sh -ex

Name/path of alternate shell binary to use for setup and bootstrap. Needs to be backwards compatible with
Bourne Shell (e.g. bash, zsh).

If you want to add an argument, use an absolute path (/bin/bash -x, not bash -x). Please do not pass
multiple args to your shell binary (this plays poorly with Linux shebang syntax).

This is also used to wrap mappers, reducers, etc. that require piping one command into another (see e.g.
mapper_pre_filter()).

Changed in version 0.6.8: Setting this to an empty value (--sh-bin ’’) means to use the default (used to
cause an error).

Changed in version 0.6.7: Used to be sh -ex on local and Hadoop runners

task_python_bin (--task-python-bin) [command] Default: same as python_bin

Name/path of alternate python binary to run the job (invoking it with --mapper, --reducer, --spark,
etc.).

In most cases, you’re better off setting python_bin, which this defaults to. This option exists mostly to support
running tasks inside Docker while using a normal Python binary in setup wrapper scripts.

1.8.4 Other

conf_paths (-c, --conf-path, --no-conf) [path list] Default: see find_mrjob_conf()

List of paths to configuration files. This option cannot be used in configuration files, because that would cause a
universe-ending causality paradox. Use –no-conf on the command line or conf_paths=[] to force mrjob to load
no configuration files at all. If no config path flags are given, mrjob will look for one in the locations specified
in Config file format and location.

Config path flags can be used multiple times to combine config files, much like the include config file directive.
Using --no-conf will cause mrjob to ignore all preceding config path flags.

For example, this line will cause mrjob to combine settings from left.conf and right .conf:

python my_job.py -c left.conf -c right.conf

This line will cause mrjob to read no config file at all:

python my_job.py --no-conf

This line will cause mrjob to read only right.conf, because --no-conf nullifies -c left.conf:

python my_job.py -c left.conf --no-conf -c right.conf

1.8. Options available to all runners 43

mrjob Documentation, Release 0.7.4

read_logs (--read-logs, --no-read-logs) [boolean] Default: True

New in version 0.6.5.

If set to false, don’t list or read the contents of log files generated in the course of running your job.

The main impact of turning off read_logs is that if your job fails, mrjob won’t spend any time or effort deter-
mining why it failed. On EMR, this effectively disables counter fetching as well.

This option does not stop the Hadoop and Dataproc runners from reading the output of the job driver (i.e.
hadoop jar ...), so you will continue to get counters and high-level Java errors on these platforms.

1.8.5 Options ignored by the local and inline runners

These options are ignored because they require a real instance of Hadoop:

• hadoop_input_format

• hadoop_output_format

• libjars

• partitioner

1.8.6 Options ignored by the inline runner

These options are ignored because the inline runner does not invoke the job as a subprocess:

• bootstrap_mrjob

• py_files

• python_bin

• read_logs

• setup

1.9 Hadoop-related options

Since mrjob is geared toward Hadoop, there are a few Hadoop-specific options. However, due to the difference
between the different runners, the Hadoop platform, and Elastic MapReduce, they are not all available for all runners.

1.9.1 Options specific to the local and inline runners

hadoop_version (--hadoop-version) [string] Default: None

Set the version of Hadoop to simulate (this currently only matters for jobconf).

If you don’t set this, the local and inline runners will run in a version-agnostic mode, where anytime
the runner sets a simulated jobconf variable, it’ll use every possible name for it (e.g. user.name and
mapreduce.job.user.name).

num_cores (--num-cores) [integer] Default: None

Maximum number of tasks to handle at one time. If not set, defaults to the number of CPUs on your system.

This also affects the number of input file splits the runner makes (the only impact in inline mode).

44 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

New in version 0.6.2.

1.9.2 Options available to local, hadoop, and emr runners

These options are both used by Hadoop and simulated by the local and inline runners to some degree.

jobconf (-D, --jobconf) [jobconf dict] Default: {}

-D args to pass to hadoop streaming. This should be a map from property name to value. Equivalent to passing
[’-D’, ’KEY1=VALUE1’, ’-D’, ’KEY2=VALUE2’, ...] to hadoop_extra_args

Changed in version 0.6.6: added the -D switch on the command line, to match Hadoop.

Changed in version 0.6.6: boolean true and false values in config files are passed correctly to Hadoop (see
JobConf dicts)

1.9.3 Options available to hadoop and emr runners

hadoop_extra_args (--hadoop-args) [string list] Default: []

Extra arguments to pass to hadoop streaming.

hadoop_streaming_jar (--hadoop-streaming-jar) [string] Default: (automatic)

Path to a custom hadoop streaming jar.

On EMR, this can be either a local path or a URI (s3://...). If you want to use a jar at a path on the master
node, use a file:// URI.

On Hadoop, mrjob tries its best to find your hadoop streaming jar, searching these directories (recursively) for a
.jar file with hadoop followed by streaming in its name:

• $HADOOP_PREFIX

• $HADOOP_HOME

• $HADOOP_INSTALL

• $HADOOP_MAPRED_HOME

• the parent of the directory containing the Hadoop binary (see hadoop_bin), unless it’s one of /, /usr or
/usr/local

• $HADOOP_*_HOME (in alphabetical order by environment variable name)

• /home/hadoop/contrib

• /usr/lib/hadoop-mapreduce

(The last two paths allow the Hadoop runner to work out-of-the box inside EMR.)

libjars (--libjars) [string list] Default: []

List of paths of JARs to be passed to Hadoop with the -libjars switch.

~ and environment variables within paths will be resolved based on the local environment.

Changed in version 0.6.7: Deprecated --libjar in favor of --libjars

Note: mrjob does not yet support libjars on Google Cloud Dataproc.

label (--label) [string] Default: script’s module name, or no_script

Alternate label for the job

1.9. Hadoop-related options 45

mrjob Documentation, Release 0.7.4

owner (--owner) [string] Default: getpass.getuser(), or no_user if that fails

Who is running this job (if different from the current user)

check_input_paths (--check-input-paths, --no-check-input-paths) [boolean] Default: True

Option to skip the input path check. With --no-check-input-paths, input paths to the runner will be
passed straight through, without checking if they exist.

spark_args (--spark-args) [string list] Default: []

Extra arguments to pass to spark-submit.

Warning: Don’t use this to set --master or --deploy-mode. On the Hadoop runner, you can change
these with spark_master and spark_deploy_mode. Other runners don’t allow you to set these because they
can only handle the defaults.

1.9.4 Options available to hadoop runner only

hadoop_bin (--hadoop-bin) [command] Default: (automatic)

Name/path of your hadoop binary (may include arguments).

mrjob tries its best to find hadoop, checking all of the following places for an executable file named hadoop:

• $HADOOP_PREFIX/bin

• $HADOOP_HOME/bin

• $HADOOP_INSTALL/bin

• $HADOOP_INSTALL/hadoop/bin

• $PATH

• $HADOOP_*_HOME/bin (in alphabetical order by environment variable name)

If all else fails, we just use hadoop and hope for the best.

Changed in version 0.6.8: Setting this to an empty value (--hadoop-bin ’’) means to search for the Hadoop
binary (used to effectively disable use of the hadoop command).

hadoop_log_dirs (--hadoop-log-dir) [path list] Default: (automatic)

Where to look for Hadoop logs (to find counters and probable cause of job failure). These can be (local) paths
or URIs (hdfs:///...).

If this is not set, mrjob will try its best to find the logs, searching in:

• $HADOOP_LOG_DIR

• $YARN_LOG_DIR (on YARN only)

• hdfs:///tmp/hadoop-yarn/staging (on YARN only)

• <job output dir>/_logs (usually this is on HDFS)

• $HADOOP_PREFIX/logs

• $HADOOP_HOME/logs

• $HADOOP_INSTALL/logs

• $HADOOP_MAPRED_HOME/logs

46 Chapter 1. Guides

http://docs.python.org/2/library/getpass.html#getpass.getuser

mrjob Documentation, Release 0.7.4

• <dir containing hadoop bin>/logs (see hadoop_bin), unless the hadoop binary is in /bin,
/usr/bin, or /usr/local/bin

• $HADOOP_*_HOME/logs (in alphabetical order by environment variable name)

• /var/log/hadoop-yarn (on YARN only)

• /mnt/var/log/hadoop-yarn (on YARN only)

• /var/log/hadoop

• /mnt/var/log/hadoop

hadoop_tmp_dir (--hadoop-tmp-dir) [path] Default: tmp/mrjob

Scratch space on HDFS. This path does not need to be fully qualified with hdfs:// URIs because it’s under-
stood that it has to be on HDFS.

spark_deploy_mode (--spark-deploy-mode) [string] Default: ’client’

Deploy mode (client or cluster) to pass to the --deploy-mode argument of spark-submit.

New in version 0.6.6.

spark_master (--spark-master) [string] Default: ’yarn’

Name or URL to pass to the --master argument of spark-submit (e.g. spark://host:port, yarn).

Note that archives (see upload_archives) only work when this is set to yarn.

spark_submit_bin (--spark-submit-bin) [command] Default: (automatic)

Name/path of your spark-submit binary (may include arguments).

mrjob tries its best to find spark-submit, checking all of the following places for an executable file named
spark-submit:

• $SPARK_HOME/bin

• $PATH

• your pyspark installation’s bin/ directory

• /usr/lib/spark/bin

• /usr/local/spark/bin

• /usr/local/lib/spark/bin

If all else fails, we just use spark-submit and hope for the best.

Changed in version 0.6.8: Searches for spark-submit in pyspark installation.

1.10 Spark runner options

All options from Options available to all runners and Hadoop-related options are available in the Spark runner.

In addition, the Spark runner has the following options in common with other runners:

• aws_access_key_id

• aws_secret_access_key

• aws_session_token

• cloud_fs_sync_secs

1.10. Spark runner options 47

mrjob Documentation, Release 0.7.4

• cloud_part_size_mb

• gcs_region

• project_id

• s3_endpoint

• s3_region

Options unique to the Spark runner:

emulate_map_input_file (--emulate-map-input-file, --no-emulate-map-input-file) [boolean]
Default: False

Imitate Hadoop by setting $mapreduce_map_input_file to the path of the input file for the current par-
tition. This helps support jobs that rely on jobconf_from_env(’mapreduce.map.input.file’).

This feature only applies to the mapper of the job’s first step, and is ignored by jobs that set
HADOOP_INPUT_FORMAT.

New in version 0.6.9.

gcs_region (--gcs-region) [string] Default: None

The region to use when creating a temporary bucket on Google Cloud Storage.

Similar in meaning to region, but only used to configure GCS (not S3)

s3_region (--s3-region) [string] Default: None

The region to use when creating a temporary bucket on S3.

Similar in meaning to region, but only used to configure S3 (not GCS)

skip_internal_protocol (--skip-internal-protocol, --no-skip-internal-protocol) [boolean]
Default: False

Don’t emulate the job’s internal protocol (used for communicating between job steps and tasks in the same step),
instead relying on Spark to encode and decode data structures.

This should work for most but not all jobs, and make them run at least somewhat faster. Some things to keep in
mind:

• data will no longer be “normalized” by being converted to and from string representation. For example,
running a tuple through JSONProtocol (the default) implicitly converts it to a list because there are no
tuples in JSON. With internal protocols skipped, it would remain a tuple.

• if your job uses SORT_VALUES, keep in mind that your values will need to be comparable as Spark will
be comparing them directly, rather than comparing their internal-protocol-encoded representation. This
may also affect sorting order.

New in version 0.6.10.

spark_tmp_dir (--spark-tmp-dir) [string] Default: (automatic)

A place to put files where they are visible to Spark executors, similar to cloud_tmp_dir.

If running locally, defaults to a directory inside local_tmp_dir, and if running on a cluster, to tmp/mrjob on
HDFS.

48 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

1.11 Configuration quick reference

1.11.1 Setting configuration options

You can set an option by:

• Passing it on the command line with the switch version (like --some-option)

• Passing it as a keyword argument to the runner constructor, if you are creating the runner programmatically

• Putting it in one of the included config files under a runner name, like this:

runners:
local:

python_bin: python3.6 # only used in local runner
emr:

python_bin: python3 # only used in Elastic MapReduce runner

See Config file format and location for information on where to put config files.

1.11.2 Options that can’t be set from mrjob.conf (all runners)

There are some options that it makes no sense to set in the config file.

These options can be set via command-line switches:

Config Command line Default Type
cat_output –cat-output, –no-cat-output output if output_dir is not set boolean
conf_paths -c, –conf-path, –no-conf see find_mrjob_conf() path list
output_dir –output-dir (automatic) string
step_output_dir –step-output-dir (automatic) string

These options can be set by overriding attributes or methods in your job class:

Option Attribute Method Default
hadoop_input_format HADOOP_INPUT_FORMAT hadoop_input_format() None
hadoop_output_format HADOOP_OUTPUT_FORMAT hadoop_output_format() None
partitioner PARTITIONER partitioner() None

These options can be set by overriding your job’s configure_args() to call the appropriate method:

Option Method Default
extra_args add_passthru_arg() []

All of the above can be passed as keyword arguments to MRJobRunner.__init__() (this is what makes them
runner options), but you usually don’t want to instantiate runners directly.

1.11.3 Other options for all runners

These options can be passed to any runner without an error, though some runners may ignore some options. See the
text after the table for specifics.

1.11. Configuration quick reference 49

mrjob Documentation, Release 0.7.4

Config Command line Default Type
bootstrap_mrjob –bootstrap-mrjob,

–no-bootstrap-mrjob
True boolean

check_input_paths –check-input-paths,
–no-check-input-paths

True boolean

cleanup –cleanup ’ALL’ string
cleanup_on_failure –cleanup-on-failure ’NONE’ string
cmdenv –cmdenv {} environment

variable dict
hadoop_extra_args –hadoop-args [] string list
hadoop_streaming_jar–hadoop-streaming-jar (automatic) string
jobconf -D, –jobconf {} jobconf dict
label –label script’s module name, or

no_script
string

libjars –libjars [] string list
local_tmp_dir –local-tmp-dir value of

tempfile.gettempdir()
path

owner –owner getpass.getuser(), or
no_user if that fails

string

py_files –py-files [] path list
python_bin –python-bin (automatic) command
read_logs –read-logs, –no-read-logs True boolean
setup –setup [] string list
sh_bin –sh-bin /bin/sh -ex command
spark_args –spark-args [] string list
task_python_bin –task-python-bin same as python_bin command
upload_archives –archives [] path list
upload_dirs –dirs [] path list
upload_files –files [] path list

LocalMRJobRunner takes no additional options, but:

• bootstrap_mrjob is False by default

• cmdenv uses the local system path separator instead of : all the time (so ; on Windows, no change elsewhere)

• python_bin defaults to the current Python interpreter

In addition, it ignores hadoop_input_format, hadoop_output_format, hadoop_streaming_jar, and jobconf

InlineMRJobRunner works like LocalMRJobRunner, only it also ignores bootstrap_mrjob, cmdenv,
python_bin, upload_archives, and upload_files.

1.11.4 Additional options for DataprocJobRunner

Config Command line Default Type
cluster_properties –cluster-property None
core_instance_config –core-instance-config None
gcloud_bin –gcloud-bin ’gcloud’ command
master_instance_config –master-instance-config None
network –network None string
project_id –project-id read from credentials config file string
service_account –service-account None
service_account_scopes –service-account-scopes (automatic)
task_instance_config –task-instance-config None

50 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

1.11.5 Additional options for EMRJobRunner

Config Command line Default Type
add_steps_in_batch –add-steps-in-batch, –no-add-steps-in-batch True for AMIs before 5.28.0, False otherwise boolean
additional_emr_info –additional-emr-info None special
applications –application, –applications [] string list
aws_access_key_id None string
aws_secret_access_key –aws-secret-access-key None string
aws_session_token None string
bootstrap_actions –bootstrap-actions [] string list
bootstrap_spark –bootstrap-spark, –no-bootstrap-spark (automatic) boolean
cloud_log_dir –cloud-log-dir append logs to cloud_tmp_dir string
core_instance_bid_price –core-instance-bid-price None string
docker_client_config –docker-client-config None string
docker_image –docker-image, –no-docker None string
docker_mounts –docker-mount [] string list
ebs_root_volume_gb –ebs-root-volume-gb None integer
ec2_endpoint –ec2-endpoint (automatic) string
ec2_key_pair –ec2-key-pair None string
ec2_key_pair_file –ec2-key-pair-file None path
emr_action_on_failure –emr-action-on-failure (automatic) string
emr_configurations –emr-configuration [] list of dicts
emr_endpoint –emr-endpoint infer from region string
enable_emr_debugging –enable-emr-debugging False boolean
hadoop_streaming_jar_on_emr –hadoop-streaming-jar-on-emr AWS default string
iam_endpoint –iam-endpoint (automatic) string
iam_instance_profile –iam-instance-profile (automatic) string
iam_service_role –iam-service-role (automatic) string
instance_fleets –instance-fleet None
instance_groups –instance-groups None
master_instance_bid_price –master-instance-bid-price None string
max_clusters_in_pool –max-clusters-in-pool 0 (disabled) integer
max_concurrent_steps –max-concurrent-steps 1 string
min_available_mb –min-available-mb 0 (disabled) integer
min_available_virtual_cores –min-available-virtual-cores 0 (disabled) integer
pool_clusters –pool-clusters True string
pool_jitter_seconds –pool-jitter-seconds 60 string
pool_name –pool-name ’default’ string
pool_timeout_minutes –pool-timeout-minutes 0 (disabled) string
pool_wait_minutes –pool-wait-minutes 0 string
release_label –release-label None string
s3_endpoint –s3-endpoint (automatic) string
ssh_add_bin –ssh-add-bin ’ssh-add’ command
ssh_bin –ssh-bin ’ssh’ command
tags –tag {} dict
task_instance_bid_price –task-instance-bid-price None string

1.11. Configuration quick reference 51

mrjob Documentation, Release 0.7.4

1.11.6 Additional options for HadoopJobRunner

Config Command line Default Type
hadoop_bin –hadoop-bin (automatic) command
hadoop_log_dirs –hadoop-log-dir (automatic) path list
hadoop_tmp_dir –hadoop-tmp-dir tmp/mrjob path
spark_deploy_mode –spark-deploy-mode ’client’ string
spark_master –spark-master ’yarn’ string
spark_submit_bin –spark-submit-bin (automatic) command

1.12 Cloud runner options

These options are generally available whenever you run your job on a Hadoop cloud service (AWS Elastic MapReduce
or Google Cloud Dataproc).

All options from Options available to all runners and Hadoop-related options are also available on cloud services.

1.12.1 Google credentials

See Getting started with Google Cloud for specific instructions about setting these options.

1.12.2 Choosing/creating a cluster to join

cluster_id (--cluster-id) [string] Default: automatically create a cluster and use it

The ID of a persistent cluster to run jobs in (on Dataproc, this is the same thing as “cluster name”).

It’s fine for other jobs to be using the cluster; we give our job’s steps a unique ID.

1.12.3 Job placement

region (--region) [string] Default: ’us-west-2’ on EMR, ’us-west1’ on Dataproc

Geographic region to run jobs in (e.g. us-central-1).

If mrjob create a temporary bucket, it will be created in this region as well.

If you set region, you do not need to set zone; a zone will be chosen for you automatically.

subnet (--subnet) [string] Default: None

Optional subnet(s) to launch your job in.

On Amazon EMR, this is the ID of a VPC subnet to launch cluster in (e.g. ’subnet-12345678’). This can
also be a list of possible subnets if you are using instance_fleets.

On Google Cloud Dataproc, this is the name of a subnetwork (e.g. ’default’). Specifying subnet rather than
network will ensure that your cluster only has access to one specific geographic region, rather than the entire
VPC.

Changed in version 0.6.8: --subnet ’’ un-sets the subnet on EMR (used to be ignored).

Changed in version 0.6.3: Works on Google Cloud Dataproc as well as AWS Elastic MapReduce.

52 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

zone (--zone) [string] Default: None

Zone within a specific geographic region to run your job in.

If you set this, you do not neet to set region.

1.12.4 Number and type of instances

instance_type (--instance-type) [string] Default: m4.large or m5.xlarge on EMR, n1-standard-1
on Dataproc

Type of instance that runs your Hadoop tasks.

Once you’ve tested a job and want to run it at scale, it’s usually a good idea to use instances larger than the
default. For EMR, see Amazon EC2 Instance Types and for Dataproc, see Machine Types.

Note: Many EC2 instance types can only run in a VPC (see subnet).

If you’re running multiple nodes (see num_core_instances), this option doesn’t apply to the master node because
it’s just coordinating tasks, not running them. Use master_instance_type instead.

Changed in version 0.6.11: Default on EMR is m5.xlarge on AMI version 5.13.0 and later, m4.large on
earlier versions

Changed in version 0.6.10: Default on EMR changed to m5.xlarge

Changed in version 0.6.6: Default on EMR changed to m4.large. Was previously m1.large‘ if running Spark,
m1.small if running on the (deprecated) 2.x AMIs, and m1.medium otherwise

core_instance_type (--core-instance-type) [string] Default: value of instance_type

like instance_type, but only for the core (worker) Hadoop nodes; these nodes run tasks and host HDFS. Usually
you just want to use instance_type.

num_core_instances (--num-core-instances) [integer] Default: 0 on EMR, 2 on Dataproc

Number of core (worker) instances to start up. These run your job and host HDFS. This is in addition to the
single master instance.

On Google Cloud Dataproc, this must be at least 2.

master_instance_type (--master-instance-type) [string] Default: (automatic)

like instance_type, but only for the master Hadoop node. This node hosts the task tracker/resource manager and
HDFS, and runs tasks if there are no other nodes.

If you’re running a single node (no num_core_instances or num_task_instances), this will default to the value
of instance_type.

Otherwise, on Dataproc, defaults to n1-standard-1, and on EMR defaults to m1.medium (exception:
m1.small on the deprecated 2.x AMIs), which is usually adequate for all but the largest jobs.

task_instance_type (--task-instance-type) [string] Default: value of core_instance_type

like instance_type, but only for the task (secondary worker) Hadoop nodes; these nodes run tasks but do not host
HDFS. Usually you just want to use instance_type.

num_task_instances (--num-task-instances) [integer] Default: 0

Number of task (secondary worker) instances to start up. These run your job but do not host HDFS.

You must have at least one core instance (see num_core_instances) to run task instances; otherwise there’s
nowhere to host HDFS.

1.12. Cloud runner options 53

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/machine-types

mrjob Documentation, Release 0.7.4

1.12.5 Cluster software configuration

image_id (--image-id) [string] Default: None

ID of a custom machine image.

On EMR, this is complimentary with image_version; you can install packages and libraries on your custom
AMI, but it’s up to EMR to install Hadoop, create the hadoop user, etc. image_version may not be less than
5.7.0.

You can use describe_base_emr_images() to identify Amazon Linux images that are compatible with
EMR.

For more details about how to create a custom AMI that works with EMR, see Best Practices and Considerations.

Note: This is not yet implemented in the Dataproc runner.

New in version 0.6.5.

image_version (--image-version) [string] Default: ’6.0.0’ on EMR, ’1.3’ on Dataproc

Machine image version to use. This controls which Hadoop version(s) are available and which version of Python
is installed, among other things.

See the AMI version docs (EMR) or the Dataproc version docs for more details.

You can use this instead of release_label on EMR, even for 4.x+ AMIs; mrjob will just prepend emr- to form
the release label.

Changed in version 0.6.12: Default on Dataproc changed from 1.0 to 1.3

Changed in version 0.6.11: Default on EMR is now 5.27.0

Changed in version 0.6.5: Default on EMR is now 5.16.0 (was 5.8.0)

Warning: The 2.x series of AMIs is deprecated by Amazon and not recommended.

Warning: The 1.x series of AMIs is no longer supported because they use Python 2.5.

bootstrap (--bootstrap) [string list] Default: []

A list of lines of shell script to run once on each node in your cluster, at bootstrap time.

This option is complex and powerful. On EMR, the best way to get started is to read the EMR Bootstrapping
Cookbook.

Passing expressions like path#name will cause path to be automatically uploaded to the task’s working direc-
tory with the filename name, marked as executable, and interpolated into the script by their absolute path on the
machine running the script.

path may also be a URI, and ~ and environment variables within path will be resolved based on the local
environment. name is optional. For details of parsing, see parse_setup_cmd().

Unlike with setup, archives are not supported (unpack them yourself).

Remember to put sudo before commands requiring root privileges!

bootstrap_python (--bootstrap-python, --no-bootstrap-python) [boolean] Default: True on Dat-
aproc, as needed on EMR.

Attempt to install a compatible (major) version of Python at bootstrap time, including header files and pip (see
Installing Python packages with pip).

54 Chapter 1. Guides

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-considerations
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/EnvironmentConfig_AMIVersion.html
https://cloud.google.com/dataproc/dataproc-versions

mrjob Documentation, Release 0.7.4

The only reason to set this to False is if you want to customize Python/pip installation using bootstrap.

extra_cluster_params (--extra-cluster-param) [dict] Default: {}

An escape hatch that allows you to pass extra parameters to the EMR/Dataproc API at cluster create time, to
access API features that mrjob does not yet support.

For EMR, see the API documentation for RunJobFlow for the full list of options.

Option names are strings, and values are data structures. On the command line, --extra-cluster-param
name=value:

--extra-cluster-param SupportedProducts='["mapr-m3"]'
--extra-cluster-param AutoScalingRole=HankPym

value can be either a JSON or a string (unless it starts with {, [, or ", so that we don’t convert malformed JSON
to strings). Parameters can be suppressed by setting them to null:

--extra-cluster-param LogUri=null

This also works with Google dataproc:

--extra-cluster-param labels='{"name": "wrench"}'

In the config file, extra_cluster_param is a dict:

runners:
emr:

extra_cluster_params:
AutoScalingRole: HankPym
LogUri: null # !clear works too
SupportedProducts:
- mapr-m3

Changed in version 0.7.2: Dictionaries will be recursively merged into existing parameters. For example:

runners:
emr:

extra_cluster_params:
Instances:
EmrManagedMasterSecurityGroup: sg-foo

Changed in version 0.6.8: You may use a name with dots in it to set (or unset) nested properties. For example:
--extra-cluster-param Instances.EmrManagedMasterSecurityGroup=sg-foo.

1.12.6 Monitoring your job

check_cluster_every (--check-cluster-every) [float] Default: 10 seconds on Dataproc, 30 seconds on EMR

How often to check on the status of your job, in seconds.

Changed in version 0.6.5: When the EMR client encounters a transient error, it will wait at least this many
seconds before trying again.

ssh_tunnel (--ssh-tunnel, --no-ssh-tunnel) [boolean] Default: False

If True, create an ssh tunnel to the job tracker/resource manager and listen on a randomly chosen port.

On EMR, this requires you to set ec2_key_pair and ec2_key_pair_file. See Configuring SSH credentials for
detailed instructions.

1.12. Cloud runner options 55

http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_RunJobFlow.html

mrjob Documentation, Release 0.7.4

On Dataproc, you don’t need to set a key, but you do need to have the gcloud utility installed and set up (make
sure you ran gcloud auth login and gcloud config set project <project_id>). See In-
stalling gcloud, gsutil, and other utilities.

Changed in version 0.6.3: Enabled on Google Cloud Dataproc

ssh_tunnel_is_open (--ssh-tunnel-is-open) [boolean] Default: False

if True, any host can connect to the job tracker through the SSH tunnel you open. Mostly useful if your browser
is running on a different machine from your job runner.

Does nothing unless ssh_tunnel is set.

ssh_bind_ports (--ssh-bind-ports) [list of integers] Default: range(40001, 40841)

A list of ports that are safe to listen on.

The main reason to set this is if your firewall blocks the default range of ports, or if you want to pick a single
port for consistency.

On the command line, this looks like --ssh-bind-ports 2000[:2001][,2003,2005:2008,etc],
where commas separate ranges and colons separate range endpoints.

1.12.7 Cloud Filesystem

cloud_fs_sync_secs (--cloud-fs-sync-secs) [float] Default: 5.0

How long to wait for cloud filesystem (e.g. S3, GCS) to reach eventual consistency? This is typically less than
a second, but the default is 5 seconds to be safe.

cloud_part_size_mb (--cloud-part-size-mb) [integer] Default: 100

Upload files to cloud filesystem in parts no bigger than this many megabytes (technically, mebibytes). Default
is 100 MiB.

Set to 0 to disable multipart uploading entirely.

Currently, Amazon requires parts to be between 5 MiB and 5 GiB. mrjob does not enforce these limits.

Changed in version 0.6.3: Enabled on Google Cloud Storage. This used to be called cloud_upload_part_size.

cloud_tmp_dir (--cloud-tmp-dir) [string] Default: (automatic)

Directory on your cloud filesystem to use as temp space (e.g. s3://yourbucket/tmp/,
gs://yourbucket/tmp/).

By default, mrjob looks for a bucket belong to you whose name starts with mrjob- and which matches region.
If it can’t find one, it creates one with a random name. This option is then set to tmp/ in this bucket (e.g.
s3://mrjob-01234567890abcdef/tmp/).

1.12.8 Auto-termination

max_mins_idle (--max-mins-idle) [float] Default: 10.0

Automatically terminate your cluster after it has been idle at least this many minutes. You cannot turn this off
(clusters left idle rack up billing charges).

If your cluster is only running a single job, mrjob will attempt to terminate it as soon as your job finishes. This
acts as an additional safeguard, as well as affecting Cluster Pooling on EMR.

56 Chapter 1. Guides

http://en.wikipedia.org/wiki/Mebibyte
http://docs.aws.amazon.com/AmazonS3/latest/dev/qfacts.html

mrjob Documentation, Release 0.7.4

Changed in version 0.6.5: EMR’s idle termination script is more robust against
sudo shutdown -h now being ignored, and logs the script’s stdout and stderr to
/var/log/bootstrap-actions/mrjob-idle-termination.log.

Changed in version 0.6.3: Uses Dataproc’s built-in cluster termination feature rather than a custom script. The
API will not allow you to set an idle time of less than 10 minutes.

Changed in version 0.6.2: No matter how small a value you set this to, there is a grace period of 10 minutes
between when the idle termination daemon launches and when it may first terminate the cluster, to allow Hadoop
to accept your first job.

1.13 Job Environment Setup Cookbook

Many jobs have significant external dependencies, both libraries and other source code.

Combining shell syntax with Hadoop’s DistributedCache notation, mrjob’s setup option provides a powerful, dynamic
alternative to pre-installing your Hadoop dependencies on every node.

All our mrjob.conf examples below are for the hadoop runner, but these work equally well with the emr runner.
Also, if you are using EMR, take a look at the EMR Bootstrapping Cookbook.

Note: Setup scripts don’t work with Spark; try py_files instead.

1.13.1 Uploading your source tree

Note: If you’re using mrjob 0.6.4 or later, check out Using other python modules and packages first.

mrjob can automatically tarball your source directory and include it in your job’s working directory. We can use setup
scripts to upload the directory and then add it to PYTHONPATH.

Run your job with:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code/#'

The / before the # tells mrjob that your-src-code is a directory. You may optionally include a / after the # as
well (e.g. export PYTHONPATH=$PYTHONPATH:your-source-code/#/your-lib).

If every job you run is going to want to use your-src-code, you can do this in your mrjob.conf:

runners:
hadoop:
setup:
- export PYTHONPATH=$PYTHONPATH:your-src-code/#

1.13.2 Uploading your source tree as an archive

Prior to mrjob 0.5.8, you had to archive directories yourself before uploading them.

tar -C your-src-code -f your-src-code.tar.gz -z -c .

Then, run your job with:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code.tar.gz#/'

1.13. Job Environment Setup Cookbook 57

http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH

mrjob Documentation, Release 0.7.4

The / after the # (without one before it) is what tells mrjob that your-src-code.tar.gz is an archive that
Hadoop should unpack.

To do the same thing in mrjob.conf:

runners:
hadoop:
setup:
- export PYTHONPATH=$PYTHONPATH:your-src-code.tar.gz#/

1.13.3 Running a makefile inside your source dir

--setup 'cd your-src-dir.tar.gz#/' --setup 'make'

or, in mrjob.conf:

runners:
hadoop:
setup:
- cd your-src-dir.tar.gz#/
- make

If Hadoop runs multiple tasks on the same node, your source dir will be shared between them. This is not a problem;
mrjob automatically adds locking around setup commands to ensure that multiple copies of your setup script don’t run
simultaneously.

1.13.4 Making data files available to your job

Best practice for one or a few files is to use passthrough options; see add_passthru_arg().

You can also use upload_files to upload file(s) into a task’s working directory (or upload_archives for tarballs and
other archives).

If you’re a setup purist, you can also do something like this:

--setup 'true your-file#desired-name'

since true has no effect and ignores its arguments.

1.13.5 Using a virtualenv

What if you can’t install the libraries you need on your Hadoop cluster?

You could do something like this in your mrjob.conf:

runners:
hadoop:
setup:
- virtualenv venv
- . venv/bin/activate
- pip install mr3po

However, now the locking feature that protects make becomes a liability; each task on the same node has its own
virtualenv, but one task has to finish setting up before the next can start.

The solution is to share the virtualenv between all tasks on the same machine, something like this:

58 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

runners:
hadoop:
setup:
- VENV=/tmp/$mapreduce_job_id
- if [! -e $VENV]; then virtualenv $VENV; fi
- . $VENV/bin/activate
- pip install mr3po

With Hadoop 1, you’d want to use $mapred_job_id instead of $mapreduce_job_id.

1.13.6 Other ways to use pip to install Python packages

If you have a lot of dependencies, best practice is to make a pip requirements file and use the -r switch:

--setup 'pip install -r path/to/requirements.txt#'

Note that pip can also install from tarballs (which is useful for custom-built packages):

--setup 'pip install $MY_PYTHON_PKGS/*.tar.gz#'

1.14 Hadoop Cookbook

1.14.1 Increasing the task timeout

Warning: Some EMR AMIs appear to not support setting parameters like timeout with jobconf at run time.
Instead, you must use Bootstrap-time configuration.

If your mappers or reducers take a long time to process a single step, you may want to increase the amount of time
Hadoop lets them run before failing them as timeouts.

You can do this with jobconf. For example, to set the timeout to one hour:

runners:
hadoop: # also works for emr runner
jobconf:
mapreduce.task.timeout: 3600000

Note: If you’re using Hadoop 1, which uses mapred.task.timeout, don’t worry: this example still works
because mrjob auto-converts your jobconf options between Hadoop versions.

1.14.2 Writing compressed output

To save space, you can have Hadoop automatically save your job’s output as compressed files. Here’s how you tell it
to bzip them:

runners:
hadoop: # also works for emr runner
jobconf:
"true" must be a string argument, not a boolean! (Issue #323)
mapreduce.output.fileoutputformat.compress: "true"
mapreduce.output.fileoutputformat.compress.codec: org.apache.hadoop.io.compress.BZip2Codec

1.14. Hadoop Cookbook 59

http://www.pip-installer.org/en/latest/cookbook.html

mrjob Documentation, Release 0.7.4

Note: You could also gzip your files with org.apache.hadoop.io.compress.GzipCodec. Usually bzip is
a better option, as .bz2 files are splittable, and .gz files are not. For example, if you use .gz files as input, Hadoop
has no choice but to create one mapper per .gz file.

1.15 Testing jobs

mrjob can run jobs without the help of Hadoop. This isn’t very efficient, but it’s a great way to test a job before
submitting it to a cluster.

1.15.1 Inline runner

The inline runner (InlineMRJobRunner) is the default runner for mrjob (it’s what’s used when you run
python mr_your_job.py <input> without any -r option). It runs your job in a single process so that you
get faster feedback and simpler tracebacks.

Multiple splits

The inline runner doesn’t run mappers or reducers concurrently, but it does run at least two mappers and two
reducers for each step. This can help catch bad assumptions about the MapReduce programming model.

For example, say we wanted to write a simple script that counted the number of lines of input:

from mrjob.job import MRJob

class MRCountLinesWrong(MRJob):

def mapper_init(self):
self.num_lines = 0

def mapper(self, _, line):
self.num_lines += 1

def mapper_final(self):
yield None, self.num_lines

if __name__ == '__main__':
MRCountLinesWrong.run()

Looks good, but if we run it, we get more than one line count:

$ python -m mrjob.examples.mr_count_lines_wrong README.rst 2> /dev/null
null 77
null 60

Aha! Because there can be more than one mapper! It’s fine to use mapper_final() like this, but we need to reduce
on a single key:

from mrjob.job import MRJob

class MRCountLinesRight(MRJob):

def mapper_init(self):

60 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

self.num_lines = 0

def mapper(self, _, line):
self.num_lines += 1

def mapper_final(self):
yield None, self.num_lines

def reducer(self, key, values):
yield key, sum(values)

if __name__ == '__main__':
MRCountLinesRight.run()

$ python -m mrjob.examples.mr_count_lines_right README.rst 2> /dev/null
null 137

Thanks, inline runner!

Isolated working directories

Just like Hadoop, the inline runner runs each mapper and reducer in its own (temporary) working directory. It does
add the original working directory to $PYTHONPATH so it can still access your local source tree.

Simulating jobconf

The inline runner simulates jobconf variables/properties set by Hadoop (and their Hadoop 1 equivalents):

• mapreduce.job.cache.archives (mapred.cache.archives)

• mapreduce.job.cache.files (mapred.cache.files)

• mapreduce.job.cache.local.archives (mapred.cache.localArchives)

• mapreduce.job.cache.local.files (mapred.cache.localFiles)

• mapreduce.job.id (mapred.job.id)

• mapreduce.job.local.dir (job.local.dir)

• mapreduce.map.input.file (map.input.file)

• mapreduce.map.input.length (map.input.length)

• mapreduce.map.input.start (map.input.start)

• mapreduce.task.attempt.id (mapred.task.id)

• mapreduce.task.id (mapred.tip.id)

• mapreduce.task.ismap (mapred.task.is.map)

• mapreduce.task.output.dir (mapred.work.output.dir)

• mapreduce.task.partition (mapred.task.partition)

You can use jobconf_from_env() to read these from your job’s environment. For example:

1.15. Testing jobs 61

mrjob Documentation, Release 0.7.4

from mrjob.compat import jobconf_from_env
from mrjob.job import MRJob

class MRCountLinesByFile(MRJob):

def mapper(self, _, line):
yield jobconf_from_env('mapreduce.map.input.file'), 1

def reducer(self, path, ones):
yield path, sum(ones)

if __name__ == '__main__':
MRCountLinesByFile.run()

$ python -m mrjob.examples.mr_count_lines_by_file README.rst CHANGES.txt 2> /dev/null
"CHANGES.txt" 564
"README.rst" 137

If you only want to simulate jobconf variables from a single version of Hadoop (for more stringent testing), you can
set hadoop_version.

Setting number of mappers and reducers

Want more or less splits? You can tell the inline runner the same way you’d tell hadoop, with the
mapreduce.job.maps and mapreduces.job.reduces jobconf options:

$ python -m mrjob.examples.mr_count_lines_wrong --jobconf mapreduce.job.maps=5 README.rst 2> /dev/null
null 24
null 33
null 38
null 30
null 12

1.15.2 Local runnner

The local runner (LocalMRJobRunner; run using -r local) supports the above features, but, unlike the
inline runner, it uses subprocesses.

This means it can be used to test options that don’t make sense in a single-process context, including:

• python_bin

• setup

The local runner does run multiple subprocesses concurrently, but it’s not really meant as a replacement for Hadoop;
it’s just for testing!

1.15.3 Anatomy of a test case

So, you’ve gotten a job working. Great! Here’s how you write a regression test so that future developers won’t break
it.

For this example we’ll use a test of the *_init() methods from the mrjob test cases:

62 Chapter 1. Guides

mrjob Documentation, Release 0.7.4

from mrjob.job import MRJob

class MRInitJob(MRJob):

def __init__(self, *args, **kwargs):
super(MRInitJob, self).__init__(*args, **kwargs)
self.sum_amount = 0
self.multiplier = 0
self.combiner_multipler = 1

def mapper_init(self):
self.sum_amount += 10

def mapper(self, key, value):
yield(None, self.sum_amount)

def reducer_init(self):
self.multiplier += 10

def reducer(self, key, values):
yield(None, sum(values) * self.multiplier)

def combiner_init(self):
self.combiner_multiplier = 2

def combiner(self, key, values):
yield(None, sum(values) * self.combiner_multiplier)

Without using any mrjob features, we can write a simple test case to make sure our methods are behaving as expected:

from unittest import TestCase

class MRInitTestCase(TestCase):

def test_mapper(self):
j = MRInitJob([])
j.mapper_init()
self.assertEqual(j.mapper(None, None).next(), (None, j.sum_amount))

To test the full job, you need to set up input, run the job, and check the collected output. The most straightforward
way to provide input is to use the sandbox() method. Create a BytesIO object, populate it with data, initialize
your job to read from stdin, and enable the sandbox with your BytesIO as stdin.

You’ll probably also want to specify --no-conf so options from your local mrjob.conf don’t pollute your testing
environment.

This example reads from stdin (hence the - parameter):

from io import BytesIO

def test_init_funcs(self):
num_inputs = 2
stdin = BytesIO(b'x\n' * num_inputs)
mr_job = MRInitJob(['--no-conf'])
mr_job.sandbox(stdin=stdin)

To run the job without leaving temp files on your system, use the make_runner() context manager.
make_runner() creates the runner specified in the command line arguments and ensures that job cleanup is per-

1.15. Testing jobs 63

http://docs.python.org/2/library/io.html#io.BytesIO
http://docs.python.org/2/library/io.html#io.BytesIO

mrjob Documentation, Release 0.7.4

formed regardless of the success or failure of the job.

Run the job with run(). The job’s output is available as a generator through cat_output() and can be parsed
with the job’s output protocol using parse_output():

results = []
with mr_job.make_runner() as runner:

runner.run()
for key, value in mrjob.parse_output(runner.cat_output()):

results.append(value)

these numbers should match if mapper_init, reducer_init, and
combiner_init were called as expected
self.assertEqual(sorted(results)[0], num_inputs * 10 * 10 * 2)

Warning: Do not let your tests depend on the input lines being processed in a certain order. Both mrjob and
Hadoop divide input non-deterministically.

1.16 Cloud Dataproc

1.16.1 Dataproc Quickstart

Getting started with Google Cloud

Using mrjob with Google Cloud Dataproc is as simple creating an account, enabling Google Cloud Dataproc, and
creating credentials.

Creating an account

• Go to cloud.google.com.

• Click the circle in the upper right, and select your Google account (if you don’t have one sign up here. If you
have multiple Google accounts, sign out first, and then sign into the account you want to use.

• Click Try it Free in the upper right

• Enter your name and payment information

• Wait a few minutes while your first project is created

Enabling Google Cloud Dataproc

• Go here (or search for “dataproc” under APIs & Services > Library in the upper left-hand menu)

• Click Enable

Configuring Google Cloud credentials

• Go here (or pick APIs & Services > Credentials in the upper left-hand menu)

• Pick Create credentials > Service account key

• Select Compute engine default service account

64 Chapter 1. Guides

https://cloud.google.com
https://accounts.google.com/SignUp
https://console.cloud.google.com/apis/library/dataproc.googleapis.com/
https://console.cloud.google.com/apis/credentials

mrjob Documentation, Release 0.7.4

• Click Create to download a JSON file.

Then you should either install and set up the optional gcloud utility (see below) or
point $GOOGLE_APPLICATION_CREDENTIALS at the file you downloaded (export
GOOGLE_APPLICATION_CREDENTIALS="/path/to/Your Credentials.json").

Installing gcloud, gsutil, and other utilities

mrjob does not require you to install the gcloud command in order to run jobs on Google Cloud Dataproc, unless
you want to set up an SSH tunnel to the Hadoop resource manager (see ssh_tunnel).

The gcloud command can be very useful for monitoring your job. The gsutil utility, packaged with it, is very
helpful for dealing with Google Storage, the cloud filesystem that Google Cloud Dataproc uses.

To install gcloud and gsutil:

• Follow these three steps to install the utilities

• Log in with your Google credentials (these will launch a browser): * gcloud auth login * gcloud
auth application-default init

On some versions of gcloud, you may have to manually configure project ID for ssh_tunnel to work.

• run gcloud projects list to get your project ID

• gcloud config set project <project_id>

It’s also helpful to set gcloud‘s region and zone to match mrjob’s defaults:

• gcloud config set compute/region us-west1

• gcloud config set compute/zone us-west1-a

• gcloud config set dataproc/region us-west1

Running a Dataproc Job

Running a job on Dataproc is just like running it locally or on your own Hadoop cluster, with the following changes:

• The job and related files are uploaded to GCS before being run

• The job is run on Dataproc (of course)

• Output is written to GCS before mrjob streams it to stdout locally

• The Hadoop version is specified by the Dataproc version

This the output of this command should be identical to the output shown in Fundamentals, but it should take much
longer:

> python word_count.py -r dataproc README.txt
"chars" 3654
"lines" 123
"words" 417

Sending Output to a Specific Place

If you’d rather have your output go to somewhere deterministic on GCS, use --output-dir:

> python word_count.py -r dataproc README.rst \
> --output-dir=gs://my-bucket/wc_out/

1.16. Cloud Dataproc 65

https://cloud.google.com/sdk/downloads#interactive
https://cloud.google.com/dataproc/dataproc-versions

mrjob Documentation, Release 0.7.4

Choosing Type and Number of GCE Instances

When you create a cluster on Dataproc, you’ll have the option of specifying a number and type of GCE instances,
which are basically virtual machines. Each instance type has different memory, CPU, I/O and network characteristics,
and costs a different amount of money. See Machine Types and Pricing for details.

Instances perform one of three roles:

• Master: There is always one master instance. It handles scheduling of tasks (i.e. mappers and reducers), but
does not run them itself.

• Worker: You may have one or more worker instances. These run tasks and host HDFS.

• Preemptible Worker: You may have zero or more of these. These run tasks, but do not host HDFS. This is
mostly useful because your cluster can lose task instances without killing your job (see Preemptible VMs).

By default, mrjob runs a single n1-standard-1, which is a cheap but not very powerful instance type. This can be
quite adequate for testing your code on a small subset of your data, but otherwise give little advantage over running a
job locally. To get more performance out of your job, you can either add more instances, use more powerful instances,
or both.

Here are some things to consider when tuning your instance settings:

• Google Cloud bills you a 10-minute minimum even if your cluster only lasts for a few minutes (this is an artifact
of the Google Cloud billing structure), so for many jobs that you run repeatedly, it is a good strategy to pick
instance settings that make your job consistently run in a little less than 10 minutes.

• Your job will take much longer and may fail if any task (usually a reducer) runs out of memory and starts using
swap. (You can verify this by using vmstat.) Restructuring your job is often the best solution, but if you can’t,
consider using a high-memory instance type.

• Larger instance types are usually a better deal if you have the workload to justify them. For example, a
n1-highcpu-8 costs about 6 times as much as an n1-standard-1, but it has about 8 times as much
processing power (and more memory).

The basic way to control type and number of instances is with the instance_type and num_core_instances options, on
the command line like this:

--instance-type n1-highcpu-8 --num-core-instances 4

or in mrjob.conf, like this:

runners:
dataproc:
instance_type: n1-highcpu-8
num_core_instances: 4

In most cases, your master instance type doesn’t need to be larger than n1-standard-1 to schedule tasks. in-
stance_type only applies to instances that actually run tasks. (In this example, there are 1 n1-standard-1 master
instance, and 4 n1-highcpu-8 worker instances.) You will need a larger master instance if you have a very large
number of input files; in this case, use the master_instance_type option.

If you want to run preemptible instances, use the task_instance_type and num_task_instances options.

1.16.2 Dataproc runner options

All options from Options available to all runners, Hadoop-related options, and Cloud runner options are available
when running jobs on Google Cloud Dataproc.

66 Chapter 1. Guides

https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/pricing
https://cloud.google.com/dataproc/preemptible-vms

mrjob Documentation, Release 0.7.4

Google credentials

Basic credentials are not set in the config file; see Getting started with Google Cloud for details.

project_id (--project-id) [string] Default: read from credentials config file

The ID of the Google Cloud Project to run under.

Changed in version 0.6.2: This used to be called gcp_project

service_account (--service-account) [] Default: None

Optional service account to use when creating a cluster. For more information see Service Accounts.

New in version 0.6.3.

service_account_scopes (--service-account-scopes) [] Default: (automatic)

Optional service account scopes to pass to the API when creating a cluster.

Generally it’s suggested that you instead create a service_account with the scopes you want.

New in version 0.6.3.

Job placement

See also subnet, region, zone

network (--network) [string] Default: None

Name or URI of network to launch cluster in. Incompatible with with subnet.

New in version 0.6.3.

Cluster configuration

cluster_properties (--cluster-property) [] Default: None

A dictionary of properties to set in the cluster’s config files (e.g. mapred-site.xml). For details, see Cluster
properties.

core_instance_config (--core-instance-config) [] Default: None

A dictionary of additional parameters to pass as config.worker_config when creating the cluster. Fol-
lows the format of InstanceGroupConfig except that it uses snake_case instead of camel_case.

For example, to specify 100GB of disk space on core instances, add this to your config file:

runners:
dataproc:

core_instance_config:
disk_config:
boot_disk_size_gb: 100

To set this option on the command line, pass in JSON:

--core-instance-config '{"disk_config": {"boot_disk_size_gb": 100}}'

This option can be used to set number of core instances (num_instances) or instance type
(machine_type_uri), but usually you’ll want to use num_core_instances and core_instance_type along
with this option.

New in version 0.6.3.

1.16. Cloud Dataproc 67

https://cloud.google.com/compute/docs/access/service-accounts#custom_service_accounts
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/cluster-properties
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/cluster-properties
https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#InstanceGroupConfig

mrjob Documentation, Release 0.7.4

master_instance_config (--master-instance-config) [] Default: None

A dictionary of additional parameters to pass as config.master_config when creating the cluster. See
core_instance_config for more details.

New in version 0.6.3.

task_instance_config (--task-instance-config) [] Default: None

A dictionary of additional parameters to pass as config.secondary_worker_config when creating the
cluster. See task_instance_config for more details.

To make task instances preemptible, add this to your config file:

runners:
dataproc:

task_instance_config:
is_preemptible: true

Note that this config won’t be applied unless you specify at least one task instance (either through
num_task_instances or by passing num_instances to this option).

New in version 0.6.3.

1.16.3 Other rarely used options

gcloud_bin (--gcloud-bin) [command] Default: ’gcloud’

Path to the gcloud binary; may include switches (e.g. ’gcloud -v’ or [’gcloud’, ’-v’]). Defaults to
gcloud.

Used only as a way to create an SSH tunnel to the Resource Manager.

Changed in version 0.6.8: Setting this to an empty value (--gcloud-bin ’’) instructs mrjob to use the
default (used to disable SSH).

1.17 Elastic MapReduce

1.17.1 Elastic MapReduce Quickstart

Configuring AWS credentials

Configuring your AWS credentials allows mrjob to run your jobs on Elastic MapReduce and use S3.

• Create an Amazon Web Services account

• Go to Security Credentials in the login menu (upper right, third from the right), say yes, you want to proceed,
click on Access Keys, and then Create New Access Key. Make sure to copy the secret access key, as there is
no way to recover it after creation.

Now you can either set the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, or
set aws_access_key_id and aws_secret_access_key in your mrjob.conf file like this:

runners:
emr:
aws_access_key_id: <your key ID>
aws_secret_access_key: <your secret>

68 Chapter 1. Guides

http://aws.amazon.com/
https://console.aws.amazon.com/iam/home?#security_credential

mrjob Documentation, Release 0.7.4

Configuring SSH credentials

Configuring your SSH credentials lets mrjob open an SSH tunnel to your jobs’ master nodes to view live progress, see
the job tracker in your browser, and fetch error logs quickly.

• Go to https://console.aws.amazon.com/ec2/home

• Make sure the Region dropdown (upper right, second from the right) matches the region you want to run jobs
in (usually “Oregon”).

• Click on Key Pairs (left sidebar, under Network & Security)

• Click on Create Key Pair (top left).

• Name your key pair EMR (any name will work but that’s what we’re using in this example)

• Save EMR.pem wherever you like (~/.ssh is a good place)

• Run chmod og-rwx /path/to/EMR.pem so that ssh will be happy

• Add the following entries to your mrjob.conf:

runners:
emr:

ec2_key_pair: EMR
ec2_key_pair_file: /path/to/EMR.pem # ~/ and $ENV_VARS allowed here
ssh_tunnel: true

Running an EMR Job

Running a job on EMR is just like running it locally or on your own Hadoop cluster, with the following changes:

• The job and related files are uploaded to S3 before being run

• The job is run on EMR (of course)

• Output is written to S3 before mrjob streams it to stdout locally

• The Hadoop version is specified by the EMR AMI version

This the output of this command should be identical to the output shown in Fundamentals, but it should take much
longer:

> python word_count.py -r emr README.txt “chars” 3654 “lines” 123 “words” 417

Sending Output to a Specific Place

If you’d rather have your output go to somewhere deterministic on S3, use --output-dir:

> python word_count.py -r emr README.rst \
> --output-dir=s3://my-bucket/wc_out/

There are many other ins and outs of effectively using mrjob with EMR. See Advanced EMR usage for some of the
ins, but the outs are left as an exercise for the reader. This is a strictly no-outs body of documentation!

Choosing Type and Number of EC2 Instances

When you create a cluster on EMR, you’ll have the option of specifying a number and type of EC2 instances, which
are basically virtual machines. Each instance type has different memory, CPU, I/O and network characteristics, and
costs a different amount of money. See Instance Types and Pricing for details.

1.17. Elastic MapReduce 69

https://console.aws.amazon.com/ec2/home
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/elasticmapreduce/pricing/

mrjob Documentation, Release 0.7.4

Instances perform one of three roles:

• Master: There is always one master instance. It handles scheduling of tasks (i.e. mappers and reducers), but
does not run them itself.

• Core: You may have one or more core instances. These run tasks and host HDFS.

• Task: You may have zero or more of these. These run tasks, but do not host HDFS. This is mostly useful
because your cluster can lose task instances without killing your job (see Spot Instances).

There’s a special case where your cluster only has a single master instance, in which case the master instance schedules
tasks, runs them, and hosts HDFS.

By default, mrjob runs a single m1.medium, which is a cheap but not very powerful instance type. This can be
quite adequate for testing your code on a small subset of your data, but otherwise give little advantage over running a
job locally. To get more performance out of your job, you can either add more instances, use more powerful instances,
or both.

Here are some things to consider when tuning your instance settings:

• Your job will take much longer and may fail if any task (usually a reducer) runs out of memory and starts
using swap. (You can verify this by running mrjob boss j-CLUSTERID vmstat and then looking in
j-CLUSTERID/*/stdout.) Restructuring your job is often the best solution, but if you can’t, consider
using a high-memory instance type.

• Larger instance types are usually a better deal if you have the workload to justify them. For example, a
c1.xlarge costs about 6 times as much as an m1.medium, but it has about 8 times as much processing
power (and more memory).

The basic way to control type and number of instances is with the instance_type and num_core_instances options, on
the command line like this:

--instance-type c1.medium --num-core-instances 4

or in mrjob.conf, like this:

runners:
emr:
instance_type: c1.medium
num_core_instances: 4

In most cases, your master instance type doesn’t need to be larger than m1.medium to schedule tasks, so instance_type
only applies to the 4 instances that actually run tasks. You will need a larger master instance if you have a very large
number of input files; in this case, use the master_instance_type option.

The num_task_instances option can be used to run 1 or more task instances (these run tasks but don’t host HDFS).
There are also core_instance_type and task_instance_type options if you want to set these directly.

1.17.2 Cluster Pooling

Clusters on EMR take several minutes to spin up, which can make development painfully slow.

To get around this, mrjob provides cluster pooling.. If you set pool_clusters to true, once your job completes, the
cluster will stay open to accept additional jobs, and eventually shut itself down after it has been idle for a certain
amount of time (by default, ten minutes; see max_mins_idle).

Note: Pooling is a way to reduce latency, not to save money. Though pooling was originally created to optimize
AWS’s practice of billing by the full hour, this ended in October 2017.

70 Chapter 1. Guides

https://aws.amazon.com/about-aws/whats-new/2017/10/amazon-emr-now-supports-per-second-billing/

mrjob Documentation, Release 0.7.4

Pooling is designed so that jobs run with the same version of mrjob and the same (or similar) mrjob.conf can share
the same clusters. Options that affect which cluster a job can join:

• additional_emr_info: (or lack thereof) must match

• applications: must match

• bootstrap: must match, and files referenced must have identical contents

• bootstrap_actions: must match

• image_version/release_label: must match

• image_id (or lack thereof) must match

• ec2_key_pair: if specified, only join clusters with the same key pair

• emr_configurations: (or lack thereof) must match

• subnet: only join clusters with the same EC2 subnet ID (or lack thereof)

Pooled jobs will also only use clusters with the same pool name, so you can use the pool_name option to partition
your clusters into separate pools.

Pooling is flexible about instance type and number of instances. It will attempt to select the cluster with the greatest
CPU capacity (based on NormalizedInstanceHours in the cluster summary returned by the ListClusters
API call), as long as the cluster’s instances provide at least as much memory and at least as much CPU as your job
requests.

Pooling is also somewhat flexible about EBS volumes (see instance_groups). Each volume must have the same volume
type, but larger volumes or volumes with more I/O ops per second are acceptable, as are additional volumes of any
type.

Pooling cannot match configurations with explicitly set ebs_root_volume_gb against clusters that use the default (or
vice versa) because the EMR API does not report what the default value is.

If you are using instance_fleets, your jobs will only join other clusters which use instance fleets. The rules are similar,
but jobs will only join clusters whose fleets use the same set of instances or a subset; there is no concept of “better”
instances.

Pooling uses EMR tags to implement a simple “locking” mechanism that keeps two jobs from joining the same cluster
simultaneously. Locks automatically expire after a minute (which is more than long enough for a new step to be
submitted to the EMR API and enter the RUNNING state).

You can allow jobs to wait for an available cluster instead of immediately starting a new one by specifying a value for
–pool-wait-minutes. mrjob will try to find a cluster every 30 seconds for pool_wait_minutes. If none is found during
that time, mrjob will start a new one.

1.17.3 EMR runner options

All options from Options available to all runners, Hadoop-related options, and Cloud runner options are available
when running jobs on Amazon Elastic MapReduce.

Amazon credentials

See Configuring AWS credentials and Configuring SSH credentials for specific instructions about setting these options.

aws_access_key_id [string] Default: None

“Username” for Amazon web services.

1.17. Elastic MapReduce 71

mrjob Documentation, Release 0.7.4

There isn’t a command-line switch for this option because credentials are supposed to be secret! Use the envi-
ronment variable AWS_ACCESS_KEY_ID instead.

aws_secret_access_key (--aws-secret-access-key) [string] Default: None

Your “password” on AWS.

There isn’t a command-line switch for this option because credentials are supposed to be secret! Use the envi-
ronment variable AWS_SECRET_ACCESS_KEY instead.

aws_session_token [string] Default: None

Temporary AWS session token, used along with aws_access_key_id and aws_secret_access_key when using
temporary credentials.

There isn’t a command-line switch for this option because credentials are supposed to be secret! Use the envi-
ronment variable AWS_SESSION_TOKEN instead.

ec2_key_pair (--ec2-key-pair) [string] Default: None

name of the SSH key you set up for EMR.

ec2_key_pair_file (--ec2-key-pair-file) [path] Default: None

path to file containing the SSH key for EMR

iam_instance_profile (--iam-instance-profile) [string] Default: (automatic)

Name of an IAM instance profile to use for EC2 clusters created by EMR. See
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html for more details on
using IAM with EMR.

iam_service_role (--iam-service-role) [string] Default: (automatic)

Name of an IAM role for the EMR service to use. See http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-
iam-roles.html for more details on using IAM with EMR.

Instance configuration

On EMR, there are three ways to configure instances:

• instance_fleets

• instance_groups

• individual instance options:

– core_instance_bid_price

– core_instance_type

– instance_type

– master_instance_bid_price

– master_instance_type

– num_core_instances

– num_task_instances

– task_instance_bid_price,

– task_instance_type

72 Chapter 1. Guides

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html

mrjob Documentation, Release 0.7.4

If there is a conflict, whichever comes later in the config files takes precedence, and the command line beats config
files. In the case of a tie, instance_fleets beats instance_groups beats other instance options.

You may set ebs_root_volume_gb regardless of which style of instance configuration you use.

instance_fleets (--instance-fleet) [] Default: None

A list of instance fleet definitions to pass to the EMR API. Pass a JSON string on the command line or use data
structures in the config file (which is itself basically JSON). For example:

runners:
emr:

instance_fleets:
- InstanceFleetType: MASTER

InstanceTypeConfigs:
- InstanceType: m1.medium
TargetOnDemandCapacity: 1

- InstanceFleetType: CORE
TargetSpotCapacity: 2
TargetOnDemandCapacity: 2
LaunchSpecifications:
SpotSpecification:

TimeoutDurationMinutes: 20
TimeoutAction: SWITCH_TO_ON_DEMAND

InstanceTypeConfigs:
- InstanceType: m1.medium
BidPriceAsPercentageOfOnDemandPrice: 50
WeightedCapacity: 1

- InstanceType: m1.large
BidPriceAsPercentageOfOnDemandPrice: 50
WeightedCapacity: 2

instance_groups (--instance-groups) [] Default: None

A list of instance group definitions to pass to the EMR API. Pass a JSON string on the command line or use data
structures in the config file (which is itself basically JSON).

This allows for more fine-tuned EBS volume configuration than ebs_root_volume_gb. For example:

runners:
emr:

instance_groups:
- InstanceRole: MASTER

InstanceCount: 1
InstanceType: m1.medium

- InstanceRole: CORE
InstanceCount: 10
InstanceType: c1.xlarge
EbsConfiguration:
EbsOptimized: true
EbsBlockDeviceConfigs:
- VolumeSpecification:

SizeInGB: 100
VolumeType: gp2

instance_groups is incompatible with instance_fleets and other instance options. See instance_fleets for details.

core_instance_bid_price (--core-instance-bid-price) [string] Default: None

When specified and not “0”, this creates the core Hadoop nodes as spot instances at this bid price. You usually
only want to set bid price for task instances.

1.17. Elastic MapReduce 73

mrjob Documentation, Release 0.7.4

master_instance_bid_price (--master-instance-bid-price) [string] Default: None

When specified and not “0”, this creates the master Hadoop node as a spot instance at this bid price. You usually
only want to set bid price for task instances unless the master instance is your only instance.

task_instance_bid_price (--task-instance-bid-price) [string] Default: None

When specified and not “0”, this creates the master Hadoop node as a spot instance at this bid price. (You
usually only want to set bid price for task instances.)

ebs_root_volume_gb (--ebs-root-volume-gb) [integer] Default: None

When specified (and not zero), sets the size of the root EBS volume, in GiB.

New in version 0.6.5.

Cluster software configuration

See also bootstrap, image_id, and image_version.

applications (--application, --applications) [string list] Default: []

Additional applications to run on 4.x AMIs (e.g. ’Ganglia’, ’Mahout’, ’Spark’).

You do not need to specify ’Hadoop’; mrjob will always include it automatically. In most cases it’ll auto-
detect when to include ’Spark’ as well.

See Applications in the EMR docs for more details.

Changed in version 0.6.7: Added --applications switch

bootstrap_actions (--bootstrap-actions) [string list] Default: []

A list of raw bootstrap actions (essentially scripts) to run prior to any of the other bootstrap steps. Any arguments
should be separated from the command by spaces (we use shlex.split()). If the action is on the local
filesystem, we’ll automatically upload it to S3.

This has little advantage over bootstrap; it is included in order to give direct access to the EMR API.

bootstrap_spark (--bootstrap-spark, --no-bootstrap-spark) [boolean] Default: (automatic)

Install Spark on the cluster. This works on AMI version 3.x and later.

By default, we automatically install Spark only if our job has Spark steps.

In case you’re curious, here’s how mrjob determines you’re using Spark:

• any SparkStep or SparkScriptStep in your job’s steps (including implicitly through the spark
method)

• “Spark” included in applications option

• any bootstrap action (see bootstrap_actions) ending in /spark-install (this is how you install Spark
on 3.x AMIs)

emr_configurations (--emr-configuration) [list of dicts] Default: []

Cluster configs for AMI version 4.x and later. For example:

runners:
emr:

emr_configurations:
- Classification: core-site

Properties:
hadoop.security.groups.cache.secs: 250

74 Chapter 1. Guides

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-components.html
http://docs.python.org/2/library/shlex.html#shlex.split

mrjob Documentation, Release 0.7.4

On the command line, configurations should be JSON-encoded:

--emr-configuration '{"Classification": "core-site", ...}

See Configuring Applications in the EMR docs for more details.

Changed in version 0.6.11: !clear tag works. Later config dicts will overwrite earlier ones with the same
Classification. If the later dict has empty Properties and Configurations, the earlier dict will
be simply deleted.

max_concurrent_steps (--max-concurrent-steps) [string] Default: 1

How many steps may an EMR cluster run at the same time? This affects both clusters launched by our job, and,
if using cluster pooling, which clusters our job will join.

Prior to AMI 5.28.0, EMR clusters could only ever run one step at a time.

New in version 0.7.4.

release_label (--release-label) [string] Default: None

EMR Release to use (e.g. emr-4.0.0). This overrides image_version.

For more information about Release Labels, see Differences Introduced in 4.x.

Monitoring your job

See also check_cluster_every, ssh_tunnel.

enable_emr_debugging (--enable-emr-debugging) [boolean] Default: False

store Hadoop logs in SimpleDB

Cluster pooling

max_clusters_in_pool (--max-clusters-in-pool) [integer] Default: 0 (disabled)

Don’t create a new pooled cluster if there are already this many active (not terminated) clusters in our pool;
instead wait until one of the clusters is available to join or terminates.

To deal with the situation where several jobs start at once, before creating a cluster, we wait a random number
of seconds (see pool_jitter_seconds and double-check before creating a new cluster).

New in version 0.7.4.

min_available_mb (--min-available-mb) [integer] Default: 0 (disabled)

When joining a pooled cluster, connect to its YARN resource manager’s metrics API and make sure that
availableMB is at least this high.

This requires SSH to work, so ec2_key_pair and ec2_key_pair_file must be set.

If you enable this option, pooling will no longer query clusters about their instance groups/fleets, since this
information is mostly redundant.

New in version 0.7.4.

min_available_virtual_cores (--min-available-virtual-cores) [integer] Default: 0 (disabled)

When joining a pooled cluster, connect to its YARN resource manager’s metrics API and make sure that
availableVirtualCores is at least this high.

Like with min_available_mb, this requires SSH to work and disables querying clusters about their instances.

1.17. Elastic MapReduce 75

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-configure-apps.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-differences.html

mrjob Documentation, Release 0.7.4

New in version 0.7.4.

pool_clusters (--pool-clusters) [string] Default: True

Try to run the job on a WAITING pooled cluster with the same bootstrap configuration. Prefer the one with
the most compute units. If we can’t join an existing cluster, create our own (unless max_clusters_in_pool or
pool_wait_minutes disallow it).

pool_jitter_seconds (--pool-jitter-seconds) [string] Default: 60

Wait a random number of seconds between 0 and this many before double-checking active clusters in the pool
for max_clusters_in_pool or to bypass pool_wait_minutes.

The main point of this option is so that if several jobs start simultaneously, they can double-check if the other
jobs have launched a cluster before launching one themselves. You may need wish to adjust this based on your
maximum pool size and the number of jobs you expect to launch simultaneously.

New in version 0.7.4.

pool_name (--pool-name) [string] Default: ’default’

Specify a pool name to join. Does not imply pool_clusters.

pool_timeout_minutes (--pool-timeout-minutes) [string] Default: 0 (disabled)

If we can’t create or join a cluster after this many minutes, raise an exception and bail out.

New in version 0.7.4.

pool_wait_minutes (--pool-wait-minutes) [string] Default: 0

If pooling is enabled and no cluster is available, retry finding a cluster every 30 seconds until this many minutes
have passed, then start a new cluster instead of joining one.

Changed in version 0.7.4: If there aren’t any active clusters with a matching pool name and hash, we may create
our own cluster before pool_wait_minutes is up. We first wait a random number of seconds and double-check
that other clusters have not been created (see pool_jitter_seconds).

S3 Filesystem

See also cloud_tmp_dir, cloud_part_size_mb

cloud_log_dir (--cloud-log-dir) [string] Default: append logs to cloud_tmp_dir

Where on S3 to put logs, for example s3://yourbucket/logs/. Logs for your cluster will go into a
subdirectory, e.g. s3://yourbucket/logs/j-CLUSTERID/.

Docker

docker_client_config (--docker-client-config) [string] Default: None

An hdfs:// URI pointing to the client config, which is used to authenticate with a private Docker registry
(e.g. ECR). This is mostly useful on AMIs prior to 6.1.0; otherwise you can use auto-authentication (see this
page).

See “Using ECR” on this page for information about how to fetch working credentials. Because ECR credentials
only last 12 hours, if you want to use ECR and Docker for multiple jobs on a long-running cluster, you may
wish to set up a cron job at bootstrap time.

New in version 0.7.4.

76 Chapter 1. Guides

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html
https://aws.amazon.com/blogs/big-data/run-spark-applications-with-docker-using-amazon-emr-6-0-0-beta/

mrjob Documentation, Release 0.7.4

docker_image (--docker-image, --no-docker) [string] Default: None

The repository, name, and optionally, tag of a docker image, in the format registry/repository:tag. If
registry/ is omitted, we assume the default registry on Docker Hub (library). If registry is a hostname,
we connect to that host instead (e.g. for use of ECR).

Other docker_* options will do nothing if this is not set.

Note that you must be running at least AMI 6.0.0 to use Docker on EMR.

New in version 0.7.4.

docker_mounts (--docker-mount) [string list] Default: []

Optional mounting instructions to pass to Docker, in the format /local/path:/path/inside/docker:ro_or_rw.

New in version 0.7.4.

API Endpoints

Note: You usually don’t want to set *_endpoint options unless you have a challenging network situation (e.g. you
have to use a proxy to get around a firewall).

ec2_endpoint (--ec2-endpoint) [string] Default: (automatic)

New in version 0.6.5.

Force mrjob to connect to EC2 on this endpoint (e.g. ec2.us-gov-west-1.amazonaws.com).

emr_endpoint (--emr-endpoint) [string] Default: infer from region

Force mrjob to connect to EMR on this endpoint (e.g. us-west-1.elasticmapreduce.amazonaws.com).

iam_endpoint (--iam-endpoint) [string] Default: (automatic)

Force mrjob to connect to IAM on this endpoint (e.g. iam.us-gov.amazonaws.com).

s3_endpoint (--s3-endpoint) [string] Default: (automatic)

Force mrjob to connect to S3 on this endpoint, rather than letting it choose the appropriate endpoint for each S3
bucket.

Warning: If you set this to a region-specific endpoint (e.g. ’s3-us-west-1.amazonaws.com’)
mrjob may not be able to access buckets located in other regions.

Other rarely used options

add_steps_in_batch (--add-steps-in-batch, --no-add-steps-in-batch) [boolean] Default: True
for AMIs before 5.28.0, False otherwise

For a multi-step job, should we submit all steps at once, or one at a time? By default, we only submit steps all
at once if the AMI doesn’t support running concurrent steps (that is, before AMI 5.28.0).

New in version 0.7.4.

additional_emr_info (--additional-emr-info) [special] Default: None

Special parameters to select additional features, mostly to support beta EMR features. Pass a JSON string on
the command line or use data structures in the config file (which is itself basically JSON).

1.17. Elastic MapReduce 77

mrjob Documentation, Release 0.7.4

emr_action_on_failure (--emr-action-on-failure) [string] Default: (automatic)

What happens if step of your job fails

• ’CANCEL_AND_WAIT’ cancels all steps on the cluster

• ’CONTINUE’ continues to the next step (useful when submitting several jobs to the same cluster)

• ’TERMINATE_CLUSTER’ shuts down the cluster entirely

The default is ’CANCEL_AND_WAIT’ when using pooling (see pool_clusters) or an existing cluster (see clus-
ter_id), and ’TERMINATE_CLUSTER’ otherwise.

hadoop_streaming_jar_on_emr (--hadoop-streaming-jar-on-emr) [string] Default: AWS default

ssh_add_bin (--ssh-add-bin) [command] Default: ’ssh-add’

Path to the ssh-add binary. Used on EMR to access logs on the non-master node, without copying your SSH
key to the master node.

New in version 0.7.2.

ssh_bin (--ssh-bin) [command] Default: ’ssh’

Path to the ssh binary; may include switches (e.g. ’ssh -v’ or [’ssh’, ’-v’]). Defaults to ssh.

On EMR, mrjob uses SSH to tunnel to the job tracker (see ssh_tunnel), as a fallback way of fetching job progress,
and as a quicker way of accessing your job’s logs.

Changed in version 0.6.8: Setting this to an empty value (--ssh-bin ’’) instructs mrjob to use the default
value (used to effectively disable SSH).

tags (--tag) [dict] Default: {}

Metadata tags to apply to the EMR cluster after its creation. See Tagging Amazon EMR Clusters for more
information on applying metadata tags to EMR clusters.

Tag names and values are strings. On the command line, to set a tag use --tag KEY=VALUE:

--tag team=development

In the config file, tags is a dict:

runners:
emr:

tags:
team: development
project: mrjob

1.17.4 EMR Bootstrapping Cookbook

Bootstrapping allows you to run commands to customize EMR machines, at the time the cluster is created.

When to use bootstrap, and when to use setup

You can use bootstrap and setup together.

Generally, you want to use bootstrap for things that are part of your general production environment, and setup for
things that are specific to your particular job. This makes things work as expected if you are using Cluster Pooling.

EMR will generally not allow you to use sudo in setup commands. See Job Environment Setup Cookbook for how
to install libraries, etc. without using sudo.

78 Chapter 1. Guides

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-tags.html

mrjob Documentation, Release 0.7.4

Installing Python packages with pip

The only tricky thing is making sure you install packages for the correct version of Python. Figure out which version
of Python you’ll be running on EMR (see python_bin for defaults).

• If it’s Python 2, use pip-2.7 (just plain pip also works on AMI 4.3.0 and later)

• If it’s Python 3, use pip-3.6 on AMI 5.20.0+, and pip-3.4 for earlier AMIs

For example, to install ujson on Python 2:

runners:
emr:
bootstrap:
- sudo pip-2.7 install ujson

See PyPI for a the full list of available Python packages.

You can also install packages from a requirements file:

runners:
emr:
bootstrap:
- sudo pip-2.7 install -r /local/path/of/requirements.txt#

Or a tarball:

runners:
emr:
bootstrap:
- sudo pip-2.7 install /local/path/of/tarball.tar.gz#

Warning: If you’re trying to run jobs on AMI version 3.0.0 (protip: don’t do that) pip appears not to work due
to out-of-date SSL certificate information.

Installing PyPy

First, download the version of PyPy you want to use from Portable PyPy Distributions for Linux.

Then instruct EMR to un-tar it and link to the binary in /usr/bin. For example:

runners:
emr:
bootstrap:
- sudo tar xvfj /local/path/to/pypy-7.1.1-linux_x86_64-portable.tar.bz2# -C /opt
- sudo ln -s /opt/pypy-7.1.1-linux_x86_64-portable/bin/pypy /usr/bin/pypy

Installing System Packages

EMR gives you access to a variety of different Amazon Machine Images, or AMIs for short (see image_version).

3.x and later AMIs

Starting with 3.0.0, EMR AMIs use Amazon Linux, which uses yum to install packages. For example, to install
NumPy:

1.17. Elastic MapReduce 79

https://pypi.python.org/pypi
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://bitbucket.org/squeaky/portable-pypy/downloads/

mrjob Documentation, Release 0.7.4

runners:
emr:
bootstrap:
- sudo yum install -y python-numpy

(Don’t forget the -y!)

Amazon Linux’s Python packages generally only work for Python 2. If you’re on Python 3, just use pip.

The most recent list of Amazon linux packages can be found here (click on “Packages List” in the left sidebar).

2.x AMIs

Probably not worth the trouble. The 2.x AMIs are based on a version of Debian that is so old it has been “archived,”
which makes their package installer, apt-get, no longer work out-of-the-box. Moreover, Python system packages
work for Python 2.6, not 2.7.

Instead, just use pip-2.7 to install Python libraries.

1.17.5 Troubleshooting

Many things can go wrong in an EMR job, and the system’s distributed nature can make it difficult to find the source
of a problem. mrjob attempts to simplify the debugging process by automatically scanning logs for probable causes
of failure.

In addition to looking at S3, mrjob can be configured to also use SSH to fetch error logs directly from the master and
worker nodes. This can speed up debugging significantly (EMR only transfers logs to S3 every five minutes).

Using persistent clusters

When troubleshooting a job, it can be convenient to use a persistent cluster to avoid having to wait for bootstrapping
every run.

First, use the mrjob create-cluster to create a persistent cluster:

$ mrjob create-cluster
Using configs in /Users/davidmarin/.mrjob.conf
Using s3://mrjob-35cdec11663cb1cb/tmp/ as our temp dir on S3
Creating persistent cluster to run several jobs in...
Creating temp directory /var/folders/zv/jmtt5bxs6xl3kzt38470hcxm0000gn/T/no_script.davidmarin.20160324.231018.720057
Copying local files to s3://mrjob-35cdec11663cb1cb/tmp/no_script.davidmarin.20160324.231018.720057/files/...
j-3BYHP30KB81XE

Now you can use the cluster ID to start the troublesome job:

$ python mrjob/examples/mr_boom.py README.rst -r emr --cluster-id j-3BYHP30KB81XE
Using configs in /Users/davidmarin/.mrjob.conf
Using s3://mrjob-35cdec11663cb1cb/tmp/ as our temp dir on S3
Creating temp directory /var/folders/zv/jmtt5bxs6xl3kzt38470hcxm0000gn/T/mr_boom.davidmarin.20160324.231045.501027
Copying local files to s3://mrjob-35cdec11663cb1cb/tmp/mr_boom.davidmarin.20160324.231045.501027/files/...
Adding our job to existing cluster j-3BYHP30KB81XE
Waiting for step 1 of 1 (s-SGVW9B5LEXF5) to complete...

PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)

80 Chapter 1. Guides

https://aws.amazon.com/amazon-linux-ami/

mrjob Documentation, Release 0.7.4

PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
Opening ssh tunnel to resource manager...
Connect to resource manager at: http://localhost:40069/cluster
RUNNING for 9.2s
RUNNING for 42.3s

0.0% complete
RUNNING for 72.6s

5.0% complete
RUNNING for 102.9s

5.0% complete
RUNNING for 133.4s
100.0% complete
FAILED

Cluster j-3BYHP30KB81XE is WAITING: Cluster ready after last step failed.
Attempting to fetch counters from logs...
Looking for step log in /mnt/var/log/hadoop/steps/s-SGVW9B5LEXF5 on ec2-52-37-112-240.us-west-2.compute.amazonaws.com...

Parsing step log: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/steps/s-SGVW9B5LEXF5/syslog
Counters: 9

Job Counters
Data-local map tasks=1
Failed map tasks=4
Launched map tasks=4
Other local map tasks=3
Total megabyte-seconds taken by all map tasks=58125312
Total time spent by all map tasks (ms)=75684
Total time spent by all maps in occupied slots (ms)=227052
Total time spent by all reduces in occupied slots (ms)=0
Total vcore-seconds taken by all map tasks=75684

Scanning logs for probable cause of failure...
Looking for task logs in /mnt/var/log/hadoop/userlogs/application_1458861299388_0001 on ec2-52-37-112-240.us-west-2.compute.amazonaws.com and task/core nodes...

Parsing task syslog: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/syslog
Parsing task stderr: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/stderr

Probable cause of failure:

PipeMapRed failed!
java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1

at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:330)
at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:543)
at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:81)
at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:432)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343)
at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:175)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:170)

(from lines 37-50 of ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/syslog)

caused by:

1.17. Elastic MapReduce 81

mrjob Documentation, Release 0.7.4

Traceback (most recent call last):
File "mr_boom.py", line 10, in <module>
MRBoom.run()

File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 430, in run
mr_job.execute()

File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 439, in execute
self.run_mapper(self.options.step_num)

File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 499, in run_mapper
for out_key, out_value in mapper_init() or ():

File "mr_boom.py", line 7, in mapper_init
raise Exception('BOOM')

Exception: BOOM

(from lines 1-12 of ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/stderr)

while reading input from s3://mrjob-35cdec11663cb1cb/tmp/mr_boom.davidmarin.20160324.231045.501027/files/README.rst

Step 1 of 1 failed
Killing our SSH tunnel (pid 52847)

Now you can fix the bug and try again, without having to wait for a new cluster to bootstrap.

Note: mrjob can fetch logs from persistent jobs even without SSH set up, but it has to pause 10 minutes to wait for
EMR to transfer logs to S3, which defeats the purpose of rapid iteration.

1.17.6 Advanced EMR usage

Spot Instances

You can potentially save money purchasing EC2 instances for your EMR clusters from AWS’s spot market. The catch
is that if someone bids more for instances that you’re using, they can be taken away from your cluster. If this happens,
you aren’t charged, but your job may fail.

You can specify spot market bid prices using the core_instance_bid_price, master_instance_bid_price, and
task_instance_bid_price options to specify a price in US dollars. For example, on the command line:

--task-instance-bid-price 0.42

or in mrjob.conf:

runners:
emr:
task_instance_bid_price: '0.42'

(Note the quotes; bid prices are strings, not floats!)

Amazon has a pretty thorough explanation of why and when you’d want to use spot instances here. The brief summary
is that either you don’t care if your job fails, in which case you want to purchase all your instances on the spot market,
or you’d need your job to finish but you’d like to save time and money if you can, in which case you want to run task
instances on the spot market and purchase master and core instances the regular way.

Cluster Pooling interacts with bid prices more or less how you’d expect; a job will join a pool with spot instances only
if it requested spot instances at the same price or lower.

82 Chapter 1. Guides

http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_SpotInstances.html?r=9215

mrjob Documentation, Release 0.7.4

Custom Python packages

See Installing Python packages with pip and Installing System Packages.

Bootstrap-time configuration

Some Hadoop options, such as the maximum number of running map tasks per node, must be set at bootstrap time
and will not work with –jobconf. You must use Amazon’s configure-hadoop script for this. For example, this limits
the number of mappers and reducers to one per node:

--bootstrap-action="s3://elasticmapreduce/bootstrap-actions/configure-hadoop \
-m mapred.tasktracker.map.tasks.maximum=1 \
-m mapred.tasktracker.reduce.tasks.maximum=1"

Note: This doesn’t work on AMI 4.0.0 and later.

Manually Reusing Clusters

In some cases, it may be useful to have more fine-grained control than Cluster Pooling provides; for example, to run
several related jobs on the same cluster.

mrjob includes a utility to create persistent clusters without running a job. For example, this command will create a
cluster with 12 EC2 instances (1 master and 11 core), taking all other options from mrjob.conf:

$ mrjob create-cluster --num-core-instances=11
...
j-CLUSTERID

You can then add jobs to the cluster with the --cluster-id switch or the cluster_id option in mrjob.conf (see
EMRJobRunner.__init__()):

$ python mr_my_job.py -r emr --cluster-id=j-CLUSTERID input_file.txt > out
...
Adding our job to existing cluster j-CLUSTERID
...

Debugging will be difficult unless you complete SSH setup (see Configuring SSH credentials) since the logs will not
be copied from the master node to S3 before either five minutes pass or the cluster terminates.

1.18 Python 2 vs. Python 3

1.18.1 Raw protocols

Both because we don’t want to break mrjob for Python 2 users, and to make writing jobs simple, jobs read their input
as strs by default (even though str means bytes in Python 2 and unicode in Python 3).

The way this works in mrjob is that RawValueProtocol is actually an alias for one of two classes,
BytesValueProtocol if you’re in Python 2, and TextValueProtocol if you’re in Python 3.

If you care about this distinction, you may want to explicitly set INPUT_PROTOCOL to one of these. If your input has
a well-defined encoding, probably you want BytesValueProtocol, and if it’s a bunch of text that’s mostly ASCII,
with like, some stuff that... might be UTF-8? (i.e. most log files), you probably want TextValueProtocol. But
most of the time it’ll just work.

1.18. Python 2 vs. Python 3 83

mrjob Documentation, Release 0.7.4

1.18.2 Bytes vs. strings

The following things are bytes in any version of Python (which means you need to use the bytes type and/or b’...’ constant in Python 3):

• data read or written by Protocols

• lines yielded by cat_output()

• anything read from cat()

The stdin, stdout, and stderr attributes of MRJobs are always bytestreams (so, for example, self.stderr
defaults to sys.stderr.buffer in Python 3).

Everything else (including file paths, URIs, arguments to commands, and logging messages) are strings; that is, strs
on Python 3, and either unicodes or ASCII strs on Python 2. Like with RawValueProtocol, most of the time
it’ll just work even if you don’t think about it.

1.18.3 python_bin

python_bin defaults to python3 in Python 3, and python in Python 2 (except on EMR AMIs prior to 4.3.0, where
we use python2.7)

1.18.4 Your Hadoop cluster

Whatever version of Python you use, you’ll have to have a compatible version of Python installed on your Hadoop
cluster. mrjob does its best to make this work on Elastic MapReduce (see bootstrap_python), but if you’re running on
your own Hadoop cluster, this is up to you.

1.19 Contributing to mrjob

1.19.1 Contribution guidelines

mrjob is developed using a standard Github pull request process. Almost all code is reviewed in pull requests.

The general process for working on mrjob is:

• Fork the project on Github

• Clone your fork to your local machine

• Create a feature branch from master (e.g. git branch delete_all_the_code)

• Write code, commit often

• Write test cases for all changed functionality

• Submit a pull request against master on Github

• Wait for code review!

It would also help to discuss your ideas on the mailing list so we can warn you of possible merge conflicts with ongoing
work or offer suggestions for where to put code.

Things that will make your branch more likely to be pulled:

• Comprehensive, fast test cases

• Detailed explanation of what the change is and how it works

84 Chapter 1. Guides

http://www.github.com/Yelp/mrjob
http://groups.google.com/group/mrjob

mrjob Documentation, Release 0.7.4

• Reference relevant issue numbers in the tracker

• API backward compatibility

If you add a new configuration option, please try to do all of these things:

• Add command line switches that allow full control over the option

• Document the option and its switches in the appropriate file under docs

1.19.2 A quick tour through the code

mrjob’s modules can be put in four categories:

• Reading command line arguments and config files, and invoking machinery accordingly

– mrjob.conf: Read config files

– mrjob.launch: Invoke runners based on command line and configs

– mrjob.options: Define command line options

• Interacting with Hadoop Streaming

– mrjob.job: Python interface for writing jobs

– mrjob.protocol: Defining data formats between Python steps

• Runners and support; submitting the job to various MapReduce environments

– mrjob.runner: Common functionality across runners

– mrjob.hadoop: Submit jobs to Hadoop

– mrjob.step: Define/implement interface between runners and script steps

– Local

* mrjob.inline: Run Python-only jobs in-process

* mrjob.local: Run Hadoop Streaming-only jobs in subprocesses

– Google Cloud Dataproc

* mrjob.dataproc: Submit jobs to Dataproc

– Amazon Elastic MapReduce

* mrjob.emr: Submit jobs to EMR

* mrjob.pool: Utilities for cluster pooling functionality

* mrjob.retry: Wrapper for S3 and EMR connections to handle recoverable errors

• Interacting with different “filesystems”

– mrjob.fs.base: Common functionality

– mrjob.fs.composite: Support multiple filesystems; if one fails, “fall through” to another

– mrjob.fs.gcs: Google Cloud Storage

– mrjob.fs.hadoop: HDFS

– mrjob.fs.local: Local filesystem

– mrjob.fs.s3: S3

– mrjob.fs.ssh: SSH

1.19. Contributing to mrjob 85

mrjob Documentation, Release 0.7.4

• Utilities

– mrjob.compat: Transparently handle differences between Hadoop versions

– mrjob.logs: Log interpretation (counters, probable cause of job failure)

– mrjob.parse: Parsing utilities for URIs, command line options, etc.

– mrjob.util: Utilities for dealing with files, command line options, various other things

86 Chapter 1. Guides

CHAPTER 2

Reference

2.1 mrjob.ami - building custom AMIs

Utilities for creating custom AMIs.

mrjob.ami.describe_base_emr_images(ec2_client)
Fetch a list of Amazon Linux AMI images that are usable with EMR, with the most recent first. This can take
several seconds.

Parameters ec2_client – a boto3 EC2 client, which can be obtained from
mrjob.emr.EMRJobRunner.make_ec2_client() or boto3.client(’ec2’)

For the sake of consistency, we have somewhat stricter requirements than the AWS documentation. Specifically:

•Amazon Linux (not Amazon Linux 2)

•HVM virtualization

•x86_64 architecture

•single EBS volume * standard volume type (not GP2)

•stable version (no “testing” or “rc”, only numbers and dots)

This only returns images going back to September 2016 (prior to that, EC2 used a different naming convention).

This returns a dictionary for each image, in the same response format as ec2_client.describe_images(). The
ImageId field contains the AMI ID, and Description contains a human-readable description.

2.2 mrjob.cat - decompress files based on extension

Emulating the way Hadoop handles input files, decompressing compressed files based on their file extension.

This module also functions as a cat substitute that can handle compressed files. It it used by local mode and can
function without the rest of the mrjob library.

mrjob.cat.bunzip2_stream(fileobj, bufsize=1024)
Decompress gzipped data on the fly.

Parameters

• fileobj – object supporting read()

• bufsize – number of bytes to read from fileobj at a time.

87

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-considerations
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_images

mrjob Documentation, Release 0.7.4

Warning: This yields decompressed chunks; it does not split on lines. To get lines, wrap this in
to_lines().

mrjob.cat.decompress(readable, path, bufsize=1024)
Take a readable which supports the .read() method correponding to the given path and returns an iterator
that yields chunks of bytes, possibly decompressing based on path.

if readable appears to be a fileobj, pass it through as-is.

if readable does not have a read() method, assume that it’s a generator that yields chunks of bytes

mrjob.cat.gunzip_stream(fileobj, bufsize=1024)
Decompress gzipped data on the fly.

Parameters

• fileobj – object supporting read()

• bufsize – number of bytes to read from fileobj at a time. The default is the same as in
gzip.

Warning: This yields decompressed chunks; it does not split on lines. To get lines, wrap this in
to_lines().

mrjob.cat.to_chunks(readable, bufsize=1024)
Convert readable, which is any object supporting read() (e.g. fileobjs) to a stream of non-empty bytes.

If readable has an __iter__ method but not a read method, pass through as-is.

2.3 mrjob.cmd: The mrjob command-line utility

The mrjob command provides a number of sub-commands that help you run and monitor jobs.

The mrjob command comes with Python-version-specific aliases (e.g. mrjob-3, mrjob-3.4), in case you
choose to install mrjob for multiple versions of Python. You may also run it as python -m mrjob.cmd
<subcommand>.

2.3.1 audit-emr-usage

Audit EMR usage over the past 2 weeks, sorted by cluster name and user.

Usage:

mrjob audit-emr-usage > report

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is

88 Chapter 2. Reference

http://docs.python.org/2/library/gzip.html#module-gzip

mrjob Documentation, Release 0.7.4

to infer this from region.
-h, --help show this help message and exit
--max-days-ago MAX_DAYS_AGO

Max number of days ago to look at jobs. By default, we
go back as far as EMR supports (currently about 2
months)

-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

-v, --verbose print more messages to stderr

2.3.2 boss

Run a command on every node of a cluster. Store stdout and stderr for results in OUTPUT_DIR.

Usage:

mrjob boss CLUSTER_ID [options] "command string"

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--ec2-key-pair-file EC2_KEY_PAIR_FILE
Path to file containing SSH key for EMR

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

-h, --help show this help message and exit
-o OUTPUT_DIR, --output-dir OUTPUT_DIR

Specify an output directory (default: CLUSTER_ID)
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

--ssh-bin SSH_BIN Name/path of ssh binary. Arguments are allowed (e.g.
--ssh-bin 'ssh -v')

-v, --verbose print more messages to stderr

2.3.3 create-cluster

Create a persistent EMR cluster to run clusters in, and print its ID to stdout.

Usage:

2.3. mrjob.cmd: The mrjob command-line utility 89

mrjob Documentation, Release 0.7.4

mrjob create-cluster

Options:

--additional-emr-info ADDITIONAL_EMR_INFO
A JSON string for selecting additional features on EMR

--applications APPLICATIONS, --application APPLICATIONS
Additional applications to run on 4.x and 5.x AMIs,
separated by commas (e.g. "Ganglia,Spark")

--bootstrap BOOTSTRAP
A shell command to set up libraries etc. before any
steps (e.g. "sudo apt-get -qy install python3"). You
may interpolate files available via URL or locally
with Hadoop Distributed Cache syntax ("sudo yum
install -y foo.rpm#")

--bootstrap-action BOOTSTRAP_ACTIONS
Raw bootstrap action scripts to run before any of the
other bootstrap steps. You can use --bootstrap-action
more than once. Local scripts will be automatically
uploaded to S3. To add arguments, just use quotes:
"foo.sh arg1 arg2"

--bootstrap-mrjob Automatically zip up the mrjob library and install it
when we run the mrjob. This is the default. Use --no-
bootstrap-mrjob if you've already installed mrjob on
your Hadoop cluster.

--no-bootstrap-mrjob Don't automatically zip up the mrjob library and
install it when we run this job. Use this if you've
already installed mrjob on your Hadoop cluster.

--bootstrap-python Attempt to install a compatible version of Python at
bootstrap time. Currently this only does anything for
Python 3, for which it is enabled by default.

--no-bootstrap-python
Don't automatically try to install a compatible
version of Python at bootstrap time.

--bootstrap-spark Auto-install Spark on the cluster (even if not
needed).

--no-bootstrap-spark Don't auto-install Spark on the cluster.
--cloud-fs-sync-secs CLOUD_FS_SYNC_SECS

How long to wait for remote FS to reach eventual
consistency. This is typically less than a second but
the default is 5.0 to be safe.

--cloud-log-dir CLOUD_LOG_DIR
URI on remote FS to write logs into

--cloud-part-size-mb CLOUD_PART_SIZE_MB
Upload files to cloud FS in parts no bigger than this
many megabytes. Default is 100 MiB. Set to 0 to
disable multipart uploading entirely.

--cloud-upload-part-size CLOUD_PART_SIZE_MB
Deprecated alias for --cloud-part-size-mb

--cloud-tmp-dir CLOUD_TMP_DIR
URI on remote FS to use as our temp directory.

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--core-instance-bid-price CORE_INSTANCE_BID_PRICE

Bid price to specify for core nodes when setting them
up as EC2 spot instances (you probably only want to do
this for task instances).

90 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

--core-instance-type CORE_INSTANCE_TYPE
Type of GCE/EC2 core instance(s) to launch

--ebs-root-volume-gb EBS_ROOT_VOLUME_GB
Size of root EBS volume, in GiB. Must be an
integer.Set to 0 to use the default

--ec2-endpoint EC2_ENDPOINT
Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--ec2-key-pair EC2_KEY_PAIR
Name of the SSH key pair you set up for EMR

--emr-action-on-failure EMR_ACTION_ON_FAILURE
Action to take when a step fails (e.g.
TERMINATE_CLUSTER, CANCEL_AND_WAIT, CONTINUE)

--emr-configuration EMR_CONFIGURATIONS
Configuration to use on 4.x AMIs as a JSON-encoded
dict; see http://docs.aws.amazon.com/ElasticMapReduce/
latest/ReleaseGuide/emr-configure-apps.html for
examples

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

--enable-emr-debugging
Enable storage of Hadoop logs in SimpleDB

--disable-emr-debugging
Disable storage of Hadoop logs in SimpleDB (the
default)

--extra-cluster-param EXTRA_CLUSTER_PARAMS
extra parameter to pass to cloud API when creating a
cluster, to access features not currently supported by
mrjob. Takes the form <param>=<value>, where value is
JSON or a string. Use <param>=null to unset a
parameter

-h, --help show this help message and exit
--iam-endpoint IAM_ENDPOINT

Force mrjob to connect to IAM on this endpoint (e.g.
iam.us-gov.amazonaws.com)

--iam-instance-profile IAM_INSTANCE_PROFILE
EC2 instance profile to use for the EMR cluster -- see
"Configure IAM Roles for Amazon EMR" in AWS docs

--iam-service-role IAM_SERVICE_ROLE
IAM service role to use for the EMR cluster -- see
"Configure IAM Roles for Amazon EMR" in AWS docs

--image-id IMAGE_ID ID of custom AWS machine image (AMI) to use
--image-version IMAGE_VERSION

version of EMR/Dataproc machine image to run
--instance-fleets INSTANCE_FLEETS

detailed JSON list of instance fleets, including EBS
configuration. See docs for --instance-fleets at
http://docs.aws.amazon.com/cli/latest/reference/emr
/create-cluster.html

--instance-groups INSTANCE_GROUPS
detailed JSON list of EMR instance configs, including
EBS configuration. See docs for --instance-groups at
http://docs.aws.amazon.com/cli/latest/reference/emr
/create-cluster.html

--instance-type INSTANCE_TYPE

2.3. mrjob.cmd: The mrjob command-line utility 91

mrjob Documentation, Release 0.7.4

Type of GCE/EC2 instance(s) to launch GCE - e.g.
n1-standard-1, n1-highcpu-4, n1-highmem-4 -- See
https://cloud.google.com/compute/docs/machine-types
EC2 - e.g. m1.medium, c3.xlarge, r3.xlarge -- See
http://aws.amazon.com/ec2/instance-types/

--label LABEL Alternate label for the job, to help us identify it.
--master-instance-bid-price MASTER_INSTANCE_BID_PRICE

Bid price to specify for the master node when setting
it up as an EC2 spot instance (you probably only want
to do this for task instances).

--master-instance-type MASTER_INSTANCE_TYPE
Type of GCE/EC2 master instance to launch

--max-mins-idle MAX_MINS_IDLE
If we create a cluster, have it automatically
terminate itself after it's been idle this many
minutes

--num-core-instances NUM_CORE_INSTANCES
Total number of core instances to launch

--num-task-instances NUM_TASK_INSTANCES
Total number of task instances to launch

--owner OWNER User who ran the job (default is the current user)
--pool-clusters Add to an existing cluster or create a new one that

does not terminate when the job completes.
--no-pool-clusters Don't run job on a pooled cluster (the default)
--pool-name POOL_NAME

Specify a pool name to join. Default is "default"
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--release-label RELEASE_LABEL

Release Label (e.g. "emr-4.0.0"). Overrides --image-
version

--s3-endpoint S3_ENDPOINT
Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

--subnet SUBNET ID of Amazon VPC subnet/URI of Google Compute Engine
subnetwork to launch cluster in.

--subnets SUBNET Like --subnet, but with a comma-separated list, to
specify multiple subnets in conjunction with
--instance-fleets (EMR only)

--tag TAGS Metadata tags to apply to the EMR cluster; should take
the form KEY=VALUE. You can use --tag multiple times

--task-instance-bid-price TASK_INSTANCE_BID_PRICE
Bid price to specify for task nodes when setting them
up as EC2 spot instances

--task-instance-type TASK_INSTANCE_TYPE
Type of GCE/EC2 task instance(s) to launch

-v, --verbose print more messages to stderr
--zone ZONE GCE zone/AWS availability zone to run Dataproc/EMR

jobs in.

2.3.4 diagnose

Print probable cause of error for a failed step.

Currently this only works on EMR.

92 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

Usage:

mrjob diagnose [opts] j-CLUSTERID

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

--step-id STEP_ID ID of a particular failed step to diagnose
-v, --verbose print more messages to stderr

New in version 0.6.1.

2.3.5 report-long-jobs

Report jobs running for more than a certain number of hours (by default, 24.0). This can help catch buggy
jobs and Hadoop/EMR operational issues.

Suggested usage: run this as a daily cron job with the -q option:

0 0 * * * mrjob report-long-jobs

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

-x EXCLUDE, --exclude EXCLUDE
Exclude clusters that match the specified tags.
Specifed in the form TAG_KEY,TAG_VALUE.

-h, --help show this help message and exit
--min-hours MIN_HOURS

Minimum number of hours a job can run before we report
it. Default: 24.0

2.3. mrjob.cmd: The mrjob command-line utility 93

mrjob Documentation, Release 0.7.4

-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

-v, --verbose print more messages to stderr

2.3.6 s3-tmpwatch

Delete all files in a given URI that are older than a specified time. The time parameter defines the threshold
for removing files. If the file has not been accessed for time, the file is removed. The time argument is
a number with an optional single-character suffix specifying the units: m for minutes, h for hours, d for
days. If no suffix is specified, time is in hours.

Suggested usage: run this as a cron job with the -q option:

0 0 * * * mrjob s3-tmpwatch -q 30d s3://your-bucket/tmp/

Usage:

mrjob s3-tmpwatch [options] <time-untouched> <URIs>

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g. s3
-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

-t, --test Don't actually delete any files; just log that we
would

-v, --verbose print more messages to stderr

2.3.7 spark-submit

A drop-in replacement for spark-submit that can use mrjob’s runners. For example, you can submit
your spark job to EMR just by adding -r emr.

This also adds a few mrjob features that are not standard with spark-submit, such as --cmdenv,
--dirs, and --setup.

New in version 0.6.7.

Changed in version 0.6.8: added local, spark runners, made spark the default (was hadoop)

Changed in version 0.7.1: --archives and --dirs are supported on all masters (except local)

Usage:

94 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

mrjob spark-submit [-r <runner>] [options] <python file | app jar>
[app arguments]

Options:

All runners:
-r {emr,hadoop,local,spark}, --runner {emr,hadoop,local,spark}

Where to run the job (default: "spark")
--class MAIN_CLASS Your application's main class (for Java / Scala apps).
--name NAME The name of your application.
--jars LIBJARS Comma-separated list of jars to include on the

driverand executor classpaths.
--packages PACKAGES Comma-separated list of maven coordinates of jars to

include on the driver and executor classpaths. Will
search the local maven repo, then maven central and
any additional remote repositories given by
--repositories. The format for the coordinates should
be groupId:artifactId:version.

--exclude-packages EXCLUDE_PACKAGES
Comma-separated list of groupId:artifactId, to exclude
while resolving the dependencies provided in
--packages to avoid dependency conflicts.

--repositories REPOSITORIES
Comma-separated list of additional remote repositories
to search for the maven coordinates given with
--packages.

--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to
placed on the PYTHONPATH for Python apps.

--files UPLOAD_FILES Comma-separated list of files to be placed in the
working directory of each executor. Ignored on
local[*] master.

--archives UPLOAD_ARCHIVES
Comma-separated list of archives to be extracted into
the working directory of each executor.

--dirs UPLOAD_DIRS Comma-separated list of directors to be archived and
then extracted into the working directory of each
executor.

--cmdenv CMDENV Arbitrary environment variable to set inside Spark, in
the format NAME=VALUE.

--conf JOBCONF Arbitrary Spark configuration property, in the format
PROP=VALUE.

--setup SETUP A command to run before each Spark executor in the
shell ("touch foo"). In cluster mode, runs before the
Spark driver as well. You may interpolate files
available via URL or on your local filesystem using
Hadoop Distributed Cache syntax (". setup.sh#"). To
interpolate archives (YARN only), use #/: "cd
foo.tar.gz#/; make.

--properties-file PROPERTIES_FILE
Path to a file from which to load extra properties. If
not specified, this will look for conf/spark-
defaults.conf.

--driver-memory DRIVER_MEMORY
Memory for driver (e.g. 1000M, 2G) (Default: 1024M).

--driver-java-options DRIVER_JAVA_OPTIONS
Extra Java options to pass to the driver.

--driver-library-path DRIVER_LIBRARY_PATH
Extra library path entries to pass to the driver.

2.3. mrjob.cmd: The mrjob command-line utility 95

mrjob Documentation, Release 0.7.4

--driver-class-path DRIVER_CLASS_PATH
Extra class path entries to pass to the driver. Note
that jars added with --jars are automatically included
in the classpath.

--executor-memory EXECUTOR_MEMORY
Memory per executor (e.g. 1000M, 2G) (Default: 1G).

--proxy-user PROXY_USER
User to impersonate when submitting the application.
This argument does not work with --principal /
--keytab.

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
-q, --quiet Don't print anything to stderr
-v, --verbose print more messages to stderr
-h, --help show this message and exit

Spark and Hadoop runners only:

--master SPARK_MASTER spark://host:port, mesos://host:port,
yarn,k8s://https://host:port, or local. Defaults to local[*]
on spark runner, yarn on hadoop runner.

--deploy-mode SPARK_DEPLOY_MODE Whether to launch the driver program
locally (“client”) or on one of the worker machines inside the
cluster (“cluster”) (Default: client).

Cluster deploy mode only:

--driver-cores DRIVER_CORES Number of cores used by the driver (Default: 1).

Spark standalone or Mesos with cluster deploy mode only:

--supervise If given, restarts the driver on failure.

Spark standalone and Mesos only:

--total-executor-cores TOTAL_EXECUTOR_CORES Total cores for all execu-
tors.

Spark standalone and YARN only:

--executor-cores EXECUTOR_CORES Number of cores per executor. (Default:
1 in YARN mode, or all available cores on the worker in stan-
dalone mode)

YARN-only:

--queue QUEUE_NAME The YARN queue to submit to (Default: “default”).

--num-executors NUM_EXECUTORS Number of executors to launch (Default:
2). If dynamic allocation is enabled, the initial number of ex-
ecutors will be at least NUM.

--principal PRINCIPAL Principal to be used to login to KDC, while running onse-
cure HDFS.

--keytab KEYTAB The full path to the file that contains the keytab for the princi-
pal specified above. This keytab will be copied to the node run-
ning the Application Master via the Secure Distributed Cache,
for renewing the login tickets and the delegation tokens period-
ically.

96 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

This also supports the same runner-specific switches as MRJobs (e.g. --hadoop-bin, --region).

2.3.8 terminate-cluster

Terminate an existing EMR cluster.

Usage:

mrjob terminate-cluster [options] CLUSTER_ID

Terminate an existing EMR cluster.

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this
from region.

--emr-endpoint EMR_ENDPOINT
Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g.
s3-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

-t, --test Don't actually delete any files; just log that we
would

-v, --verbose print more messages to stderr

2.3.9 terminate-idle-clusters

Terminate idle EMR clusters that meet the criteria passed in on the command line (or, by default, clusters
that have been idle for one hour).

Suggested usage: run this as a cron job with the -q option:

*/30 * * * * mrjob terminate-idle-clusters -q

Changed in version 0.6.4: Skips termination-protected idle clusters, rather than crashing. (This was also
backported to mrjob v0.5.12.)

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
Path to alternate mrjob.conf file to read from

--no-conf Don't load mrjob.conf even if it's available
--dry-run Don't actually kill idle jobs; just log that we would
--ec2-endpoint EC2_ENDPOINT

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-west-1.amazonaws.com). Default is to infer this

2.3. mrjob.cmd: The mrjob command-line utility 97

mrjob Documentation, Release 0.7.4

from region.
--emr-endpoint EMR_ENDPOINT

Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com). Default is
to infer this from region.

-h, --help show this help message and exit
--max-mins-idle MAX_MINS_IDLE

Max number of minutes a cluster can go without
bootstrapping, running a step, or having a new step
created. This will fire even if there are pending
steps which EMR has failed to start. Make sure you set
this higher than the amount of time your jobs can take
to start instances and bootstrap.

--max-mins-locked MAX_MINS_LOCKED
Deprecated, does nothing

--pool-name POOL_NAME
Only terminate clusters in the given named pool.

--pooled-only Only terminate pooled clusters
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT

Force mrjob to connect to S3 on this endpoint (e.g.
s3-us-west-1.amazonaws.com). You usually shouldn't set
this; by default mrjob will choose the correct
endpoint for each S3 bucket based on its location.

--unpooled-only Only terminate un-pooled clusters
-v, --verbose print more messages to stderr

2.4 mrjob.compat - Hadoop version compatibility

Utility functions for compatibility with different version of hadoop.

mrjob.compat.jobconf_from_dict(jobconf, name, default=None)
Get the value of a jobconf variable from the given dictionary.

Parameters

• jobconf (dict) – jobconf dictionary

• name (string) – name of the jobconf variable (e.g. ’user.name’)

• default – fallback value

If the name of the jobconf variable is different in different versions of Hadoop (e.g. in Hadoop 2,
map.input.file is mapreduce.map.input.file), we’ll automatically try all variants before giving
up.

Return default if that jobconf variable isn’t set

mrjob.compat.jobconf_from_env(variable, default=None)
Get the value of a jobconf variable from the runtime environment.

For example, a MRJob could use jobconf_from_env(’map.input.file’) to get the name of the file
a mapper is reading input from.

If the name of the jobconf variable is different in different versions of Hadoop (e.g. in Hadoop 2.0,
map.input.file is mapreduce.map.input.file), we’ll automatically try all variants before giving
up.

98 Chapter 2. Reference

http://docs.python.org/2/library/stdtypes.html#dict
http://docs.python.org/2/library/string.html#module-string

mrjob Documentation, Release 0.7.4

Return default if that jobconf variable isn’t set.

mrjob.compat.map_version(version, version_map)
Allows you to look up something by version (e.g. which jobconf variable to use, specifying only the versions
where that value changed.

version is a string

version_map is a map from version (as a string) that a value changed to the new value.

For efficiency, version_map can also be a list of tuples of (LooseVersion(version_as_string),
value), with oldest versions first.

If version is less than any version in version_map, use the value for the earliest version in version_map.

mrjob.compat.translate_jobconf(variable, version)
Translate variable to Hadoop version version. If it’s not a variable we recognize, leave as-is.

mrjob.compat.translate_jobconf_dict(jobconf, hadoop_version=None)
Translates the configuration property name to match those that are accepted in hadoop_version. Prints a warning
message if any configuration property name does not match the name in the hadoop version. Combines the
original jobconf with the translated jobconf.

Returns a map consisting of the original and translated configuration property names and values.

mrjob.compat.translate_jobconf_for_all_versions(variable)
Get all known variants of the given jobconf variable. Unlike translate_jobconf(), returns a list.

mrjob.compat.uses_yarn(version)
Basically, is this Hadoop 2? This also handles versions in the zero series (0.23+) where YARN originated.

mrjob.compat.version_gte(version, cmp_version_str)
Return True if version >= cmp_version_str.

2.5 mrjob.conf - parse and write config files

“mrjob.conf” is the name of both this module, and the global config file for mrjob.

2.5.1 Reading and writing mrjob.conf

mrjob.conf.find_mrjob_conf()
Look for mrjob.conf, and return its path. Places we look:

•The location specified by MRJOB_CONF

•~/.mrjob.conf

•/etc/mrjob.conf

Return None if we can’t find it.

mrjob.conf.load_opts_from_mrjob_conf(runner_alias, conf_path=None, al-
ready_loaded=None)

Load a list of dictionaries representing the options in a given mrjob.conf for a specific runner, resolving includes.
Returns [(path, values)]. If conf_path is not found, return [(None, {})].

Parameters

• runner_alias (str) – String identifier of the runner type, e.g. emr, local, etc.

• conf_path (str) – location of the file to load

2.5. mrjob.conf - parse and write config files 99

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

• already_loaded (list) – list of real (according to os.path.realpath()) conf paths
that have already been loaded (used by load_opts_from_mrjob_confs()).

Relative include: paths are relative to the real (after resolving symlinks) path of the including conf file

This will only load each config file once, even if it’s referenced from multiple paths due to symlinks.

mrjob.conf.load_opts_from_mrjob_confs(runner_alias, conf_paths=None)
Load a list of dictionaries representing the options in a given list of mrjob config files for a specific runner.
Returns [(path, values), ...]. If a path is not found, use (None, {}) as its value.

If conf_paths is None, look for a config file in the default locations (see find_mrjob_conf()).

Parameters

• runner_alias (str) – String identifier of the runner type, e.g. emr, local, etc.

• conf_path – locations of the files to load

This will only load each config file once, even if it’s referenced from multiple paths due to symlinks.

2.5.2 Combining options

Combiner functions take a list of values to combine, with later options taking precedence over earlier ones. None
values are always ignored.

mrjob.conf.combine_cmds(*cmds)
Take zero or more commands to run on the command line, and return the last one that is not None. Each
command should either be a list containing the command plus switches, or a string, which will be parsed
with shlex.split(). The string must either be a byte string or a unicode string containing no non-ASCII
characters.

Returns either None or a list containing the command plus arguments.

mrjob.conf.combine_dicts(*dicts)
Combine zero or more dictionaries. Values from dicts later in the list take precedence over values earlier in the
list.

If you pass in None in place of a dictionary, it will be ignored.

mrjob.conf.combine_envs(*envs)
Combine zero or more dictionaries containing environment variables. Environment variable values may be
wrapped in ClearedValue.

Environment variables later from dictionaries later in the list take priority over those earlier in the list.

For variables ending with PATH, we prepend (and add a colon) rather than overwriting. Wrapping a path value
in ClearedValue disables this behavior.

Environment set to ClearedValue(None) will delete environment variables earlier in the list, rather than
setting them to None.

If you pass in None in place of a dictionary in envs, it will be ignored.

mrjob.conf.combine_jobconfs(*jobconfs)
Like combine_dicts(), but non-string values are converted to Java-readable string (e.g. True becomes ‘true’).
Keys whose value is None are blanked out.

mrjob.conf.combine_lists(*seqs)
Concatenate the given sequences into a list. Ignore None values.

Generally this is used for a list of commands we want to run; the “default” commands get run before any
commands specific to your job.

100 Chapter 2. Reference

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/shlex.html#shlex.split

mrjob Documentation, Release 0.7.4

Strings, bytes, and non-sequence objects (e.g. numbers) are treated as single-item lists.

mrjob.conf.combine_local_envs(*envs)
Same as combine_envs(), except that paths are combined using the local path separator (e.g ; on Windows
rather than :).

mrjob.conf.combine_path_lists(*path_seqs)
Concatenate the given sequences into a list. Ignore None values. Resolve ~ (home dir) and environment vari-
ables, and expand globs that refer to the local filesystem.

Can take single strings as well as lists.

mrjob.conf.combine_paths(*paths)
Returns the last value in paths that is not None. Resolve ~ (home dir) and environment variables.

mrjob.conf.combine_values(*values)
Return the last value in values that is not None.

The default combiner; good for simple values (booleans, strings, numbers).

2.6 mrjob.dataproc - run on Dataproc

2.6.1 Job Runner

class mrjob.dataproc.DataprocJobRunner(**kwargs)
Runs an MRJob on Google Cloud Dataproc. Invoked when you run your job with -r dataproc.

DataprocJobRunner runs your job in an Dataproc cluster, which is basically a temporary Hadoop cluster.

Input, support, and jar files can be either local or on GCS; use gs://... URLs to refer to files on GCS.

This class has some useful utilities for talking directly to GCS and Dataproc, so you may find it useful to
instantiate it without a script:

from mrjob.dataproc import DataprocJobRunner
...

2.6.2 GCS Utilities

class mrjob.dataproc.GCSFilesystem(credentials=None, project_id=None, part_size=None, loca-
tion=None, object_ttl_days=None)

Filesystem for Google Cloud Storage (GCS) URIs

Parameters

• credentials – an optional google.auth.credentials.Credentials, used to
initialize the storage client

• project_id – an optional project ID, used to initialize the storage client

• part_size – Part size for multi-part uploading, in bytes, or None

• location – Default location to use when creating a bucket

• object_ttl_days – Default object expiry for newly created buckets

Changed in version 0.7.0: removed local_tmp_dir

Changed in version 0.6.8: deprecated local_tmp_dir, added part_size, location, object_ttl_days

2.6. mrjob.dataproc - run on Dataproc 101

mrjob Documentation, Release 0.7.4

2.7 mrjob.emr - run on EMR

2.7.1 Job Runner

class mrjob.emr.EMRJobRunner(**kwargs)
Runs an MRJob on Amazon Elastic MapReduce. Invoked when you run your job with -r emr.

EMRJobRunner runs your job in an EMR cluster, which is basically a temporary Hadoop cluster. Normally,
it creates a cluster just for your job; it’s also possible to run your job in a specific cluster by setting cluster_id or
to automatically choose a waiting cluster, creating one if none exists, by setting pool_clusters.

Input, support, and jar files can be either local or on S3; use s3://... URLs to refer to files on S3.

This class has some useful utilities for talking directly to S3 and EMR, so you may find it useful to instantiate it
without a script:

from mrjob.emr import EMRJobRunner

emr_client = EMRJobRunner().make_emr_client()
clusters = emr_client.list_clusters()
...

2.7.2 EMR Utilities

EMRJobRunner.get_cluster_id()
Get the ID of the cluster our job is running on, or None.

EMRJobRunner.get_image_version()
Get the version of the AMI that our cluster is running, or None.

EMRJobRunner.get_job_steps()
Fetch the steps submitted by this runner from the EMR API.

Deprecated since version 0.7.4.

New in version 0.6.1.

EMRJobRunner.make_emr_client()
Create a boto3 EMR client.

Returns a botocore.client.EMR wrapped in a mrjob.retry.RetryWrapper

2.7.3 S3 Utilities

class mrjob.fs.s3.S3Filesystem(aws_access_key_id=None, aws_secret_access_key=None,
aws_session_token=None, s3_endpoint=None, s3_region=None,
part_size=None)

Filesystem for Amazon S3 URIs. Typically you will get one of these via EMRJobRunner().fs, composed
with SSHFilesystem and LocalFilesystem.

Parameters

• aws_access_key_id – Your AWS access key ID

• aws_secret_access_key – Your AWS secret access key

• aws_session_token – session token for use with temporary AWS credentials

• s3_endpoint – If set, always use this endpoint

102 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

• s3_region – Default region for connections to the S3 API and newly created buckets.

• part_size – Part size for multi-part uploading, in bytes, or None

Changed in version 0.6.8: added part_size

S3Filesystem.create_bucket(bucket_name, region=None)
Create a bucket on S3 with a location constraint matching the given region.

S3Filesystem.get_all_bucket_names()
Get a list of the names of all buckets owned by this user on S3.

S3Filesystem.get_bucket(bucket_name)
Get the (boto3) bucket, connecting through the appropriate endpoint.

S3Filesystem.make_s3_client(region_name=None)
Create a boto3 S3 client, wrapped in a mrjob.retry.RetryWrapper

Parameters region – region to use to choose S3 endpoint.

S3Filesystem.make_s3_resource(region_name=None)
Create a boto3 S3 resource, with its client wrapped in a mrjob.retry.RetryWrapper

Parameters region – region to use to choose S3 endpoint

It’s best to use get_bucket() because it chooses the appropriate S3 endpoint automatically. If you are trying
to get bucket metadata, use make_s3_client().

2.7.4 Other AWS clients

EMRJobRunner.make_ec2_client()
Create a boto3 EC2 client.

Returns a botocore.client.EC2 wrapped in a mrjob.retry.RetryWrapper

EMRJobRunner.make_iam_client()
Create a boto3 IAM client.

Returns a botocore.client.IAM wrapped in a mrjob.retry.RetryWrapper

2.8 mrjob.hadoop - run on your Hadoop cluster

class mrjob.hadoop.HadoopJobRunner(**kwargs)
Runs an MRJob on your Hadoop cluster. Invoked when you run your job with -r hadoop.

Input and support files can be either local or on HDFS; use hdfs://... URLs to refer to files on HDFS.

HadoopJobRunner.__init__(**kwargs)
HadoopJobRunner takes the same arguments as MRJobRunner, plus some additional options which can
be defaulted in mrjob.conf .

2.8.1 Utilities

mrjob.hadoop.fully_qualify_hdfs_path(path)
If path isn’t an hdfs:// URL, turn it into one.

2.8. mrjob.hadoop - run on your Hadoop cluster 103

mrjob Documentation, Release 0.7.4

2.9 mrjob.inline - debugger-friendly local testing

class mrjob.inline.InlineMRJobRunner(mrjob_cls=None, **kwargs)
Runs an MRJob in the same process, so it’s easy to attach a debugger.

This is the default way to run jobs (we assume you’ll spend some time debugging your job before you’re ready
to run it on EMR or Hadoop).

Unlike other runners, InlineMRJobRunner‘s run() method raises the actual exception that caused a step
to fail (rather than StepFailedException).

To more accurately simulate your environment prior to running on Hadoop/EMR, use -r local (see
LocalMRJobRunner).

New in version 0.6.8: can run SparkSteps via the pyspark library.

InlineMRJobRunner.__init__(mrjob_cls=None, **kwargs)
InlineMRJobRunner takes the same keyword args as MRJobRunner. However, please note that
hadoop_input_format, hadoop_output_format, and partitioner are ignored because they require Java. If you
need to test these, consider starting up a standalone Hadoop instance and running your job with -r hadoop.

2.10 mrjob.job - defining your job

class mrjob.job.MRJob(args=None)
The base class for all MapReduce jobs. See __init__() for details.

2.10.1 One-step jobs

MRJob.mapper(key, value)
Re-define this to define the mapper for a one-step job.

Yields zero or more tuples of (out_key, out_value).

Parameters

• key – A value parsed from input.

• value – A value parsed from input.

If you don’t re-define this, your job will have a mapper that simply yields (key, value) as-is.

By default (if you don’t mess with Protocols):

• key will be None

• value will be the raw input line, with newline stripped.

• out_key and out_value must be JSON-encodable: numeric, unicode, boolean, None, list, or
dict whose keys are unicodes.

MRJob.reducer(key, values)
Re-define this to define the reducer for a one-step job.

Yields one or more tuples of (out_key, out_value)

Parameters

• key – A key which was yielded by the mapper

104 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

• value – A generator which yields all values yielded by the mapper which correspond to
key.

By default (if you don’t mess with Protocols):

• out_key and out_value must be JSON-encodable.

• key and value will have been decoded from JSON (so tuples will become lists).

MRJob.combiner(key, values)
Re-define this to define the combiner for a one-step job.

Yields one or more tuples of (out_key, out_value)

Parameters

• key – A key which was yielded by the mapper

• value – A generator which yields all values yielded by one mapper task/node which cor-
respond to key.

By default (if you don’t mess with Protocols):

• out_key and out_value must be JSON-encodable.

• key and value will have been decoded from JSON (so tuples will become lists).

MRJob.mapper_init()
Re-define this to define an action to run before the mapper processes any input.

One use for this function is to initialize mapper-specific helper structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

MRJob.mapper_final()
Re-define this to define an action to run after the mapper reaches the end of input.

One way to use this is to store a total in an instance variable, and output it after reading all input data. See
mrjob.examples for an example.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

MRJob.reducer_init()
Re-define this to define an action to run before the reducer processes any input.

One use for this function is to initialize reducer-specific helper structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

MRJob.reducer_final()
Re-define this to define an action to run after the reducer reaches the end of input.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

2.10. mrjob.job - defining your job 105

mrjob Documentation, Release 0.7.4

MRJob.combiner_init()
Re-define this to define an action to run before the combiner processes any input.

One use for this function is to initialize combiner-specific helper structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

MRJob.combiner_final()
Re-define this to define an action to run after the combiner reaches the end of input.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable; re-define INTERNAL_PROTOCOL to
change this.

MRJob.mapper_cmd()
Re-define this to define the mapper for a one-step job as a shell command. If you define your mapper this
way, the command will be passed unchanged to Hadoop Streaming, with some minor exceptions. For important
specifics, see Shell commands as steps.

Basic example:

def mapper_cmd(self):
return 'cat'

MRJob.reducer_cmd()
Re-define this to define the reducer for a one-step job as a shell command. If you define your mapper this way,
the command will be passed unchanged to Hadoop Streaming, with some minor exceptions. For specifics, see
Shell commands as steps.

Basic example:

def reducer_cmd(self):
return 'cat'

MRJob.combiner_cmd()
Re-define this to define the combiner for a one-step job as a shell command. If you define your mapper this
way, the command will be passed unchanged to Hadoop Streaming, with some minor exceptions. For specifics,
see Shell commands as steps.

Basic example:

def combiner_cmd(self):
return 'cat'

MRJob.mapper_pre_filter()
Re-define this to specify a shell command to filter the mapper’s input before it gets to your job’s mapper in a
one-step job. For important specifics, see Filtering task input with shell commands.

Basic example:

def mapper_pre_filter(self):
return 'grep "ponies"'

MRJob.reducer_pre_filter()
Re-define this to specify a shell command to filter the reducer’s input before it gets to your job’s reducer in a
one-step job. For important specifics, see Filtering task input with shell commands.

Basic example:

106 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

def reducer_pre_filter(self):
return 'grep "ponies"'

MRJob.combiner_pre_filter()
Re-define this to specify a shell command to filter the combiner’s input before it gets to your job’s combiner in
a one-step job. For important specifics, see Filtering task input with shell commands.

Basic example:

def combiner_pre_filter(self):
return 'grep "ponies"'

MRJob.mapper_raw(input_path, input_uri)
Re-define this to make Hadoop pass one input file to each mapper.

Parameters

• input_path – a local path that the input file has been copied to

• input_uri – the URI of the input file on HDFS, S3, etc

New in version 0.6.3.

MRJob.spark(input_path, output_path)
Re-define this with Spark code to run. You can read input with input_path and output with output_path.

Warning: Prior to v0.6.8, to pass job methods into Spark (rdd.flatMap(self.some_method)),
you first had to call self.sandbox(); otherwise Spark would error because self was not serializable.

2.10.2 Multi-step jobs

MRJob.steps()
Re-define this to make a multi-step job.

If you don’t re-define this, we’ll automatically create a one-step job using any of mapper(),
mapper_init(), mapper_final(), reducer_init(), reducer_final(), and reducer() that
you’ve re-defined. For example:

def steps(self):
return [MRStep(mapper=self.transform_input,

reducer=self.consolidate_1),
MRStep(reducer_init=self.log_mapper_init,

reducer=self.consolidate_2)]

Returns a list of steps constructed with MRStep or other classes in mrjob.step.

2.10.3 Running the job

classmethod MRJob.run()
Entry point for running job from the command-line.

This is also the entry point when a mapper or reducer is run by Hadoop Streaming.

Does one of:

•Run a mapper (--mapper). See run_mapper()

•Run a combiner (--combiner). See run_combiner()

2.10. mrjob.job - defining your job 107

mrjob Documentation, Release 0.7.4

•Run a reducer (--reducer). See run_reducer()

•Run the entire job. See run_job()

MRJob.__init__(args=None)
Entry point for running your job from other Python code.

You can pass in command-line arguments, and the job will act the same way it would if it were run from the
command line. For example, to run your job on EMR:

mr_job = MRYourJob(args=['-r', 'emr'])
with mr_job.make_runner() as runner:

...

Passing in None is the same as passing in sys.argv[1:]

For a full list of command-line arguments, run: python -m mrjob.job --help

Parameters args – Arguments to your script (switches and input files)

Changed in version 0.7.0: Previously, args set to None was equivalent to [].

MRJob.make_runner()
Make a runner based on command-line arguments, so we can launch this job on EMR, on Hadoop, or locally.

Return type mrjob.runner.MRJobRunner

2.10.4 Parsing output

MRJob.parse_output(chunks)
Parse the final output of this MRJob (as a stream of byte chunks) into a stream of (key, value).

2.10.5 Counters and status messages

MRJob.increment_counter(group, counter, amount=1)
Increment a counter in Hadoop streaming by printing to stderr.

Parameters

• group (str) – counter group

• counter (str) – description of the counter

• amount (int) – how much to increment the counter by

Commas in counter or group will be automatically replaced with semicolons (commas confuse Hadoop
streaming).

MRJob.set_status(msg)
Set the job status in hadoop streaming by printing to stderr.

This is also a good way of doing a keepalive for a job that goes a long time between outputs; Hadoop streaming
usually times out jobs that give no output for longer than 10 minutes.

2.10.6 Setting protocols

MRJob.INPUT_PROTOCOL = <class ‘mrjob.protocol.BytesValueProtocol’>
Protocol for reading input to the first mapper in your job. Default: RawValueProtocol.

For example you know your input data were in JSON format, you could set:

108 Chapter 2. Reference

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#int

mrjob Documentation, Release 0.7.4

INPUT_PROTOCOL = JSONValueProtocol

in your class, and your initial mapper would receive decoded JSONs rather than strings.

See mrjob.protocol for the full list of protocols.

MRJob.INTERNAL_PROTOCOL = <class ‘mrjob.protocol.StandardJSONProtocol’>
Protocol for communication between steps and final output. Default: JSONProtocol.

For example if your step output weren’t JSON-encodable, you could set:

INTERNAL_PROTOCOL = PickleProtocol

and step output would be encoded as string-escaped pickles.

See mrjob.protocol for the full list of protocols.

MRJob.OUTPUT_PROTOCOL = <class ‘mrjob.protocol.StandardJSONProtocol’>
Protocol to use for writing output. Default: JSONProtocol.

For example, if you wanted the final output in repr, you could set:

OUTPUT_PROTOCOL = ReprProtocol

See mrjob.protocol for the full list of protocols.

MRJob.input_protocol()
Instance of the protocol to use to convert input lines to Python objects. Default behavior is to return an instance
of INPUT_PROTOCOL.

MRJob.internal_protocol()
Instance of the protocol to use to communicate between steps. Default behavior is to return an instance of
INTERNAL_PROTOCOL.

MRJob.output_protocol()
Instance of the protocol to use to convert Python objects to output lines. Default behavior is to return an instance
of OUTPUT_PROTOCOL.

MRJob.pick_protocols(step_num, step_type)
Pick the protocol classes to use for reading and writing for the given step.

Parameters

• step_num (int) – which step to run (e.g. 0 for the first step)

• step_type (str) – one of ‘mapper’, ‘combiner’, or ‘reducer’

Returns (read_function, write_function)

By default, we use one protocol for reading input, one internal protocol for communication between steps, and
one protocol for final output (which is usually the same as the internal protocol). Protocols can be controlled by
setting INPUT_PROTOCOL, INTERNAL_PROTOCOL, and OUTPUT_PROTOCOL.

Re-define this if you need fine control over which protocols are used by which steps.

2.10.7 Secondary sort

MRJob.SORT_VALUES = None
Set this to True if you would like reducers to receive the values associated with any key in sorted order (sorted
by their encoded value). Also known as secondary sort.

2.10. mrjob.job - defining your job 109

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

This can be useful if you expect more values than you can fit in memory to be associated with one key, but you
want to apply information in a small subset of these values to information in the other values. For example, you
may want to convert counts to percentages, and to do this you first need to know the total count.

Even though values are sorted by their encoded value, most encodings will sort strings in order. For exam-
ple, you could have values like: [’A’, <total>], [’B’, <count_name>, <count>], and the value
containing the total should come first regardless of what protocol you’re using.

See jobconf() and partitioner() for more about

2.10.8 Command-line options

See Defining command line options for information on adding command line options to your job. See Configuration
quick reference for a complete list of all configuration options.

MRJob.configure_args()
Define arguments for this script. Called from __init__().

Re-define to define custom command-line arguments or pass through existing ones:

def configure_args(self):
super(MRYourJob, self).configure_args()

self.add_passthru_arg(...)
self.add_file_arg(...)
self.pass_arg_through(...)
...

MRJob.add_passthru_arg(*args, **kwargs)
Function to create options which both the job runner and the job itself respect (we use this for protocols, for
example).

Use it like you would use argparse.ArgumentParser.add_argument():

def configure_args(self):
super(MRYourJob, self).configure_args()
self.add_passthru_arg(

'--max-ngram-size', type=int, default=4, help='...')

If you want to pass files through to the mapper/reducer, use add_file_arg() instead.

If you want to pass through a built-in option (e.g. --runner, use pass_arg_through() instead.

MRJob.add_file_arg(*args, **kwargs)
Add a command-line option that sends an external file (e.g. a SQLite DB) to Hadoop:

def configure_args(self):
super(MRYourJob, self).configure_args()
self.add_file_arg('--scoring-db', help=...)

This does the right thing: the file will be uploaded to the working dir of the script on Hadoop, and the script will
be passed the same option, but with the local name of the file in the script’s working directory.

Note: If you pass a file to a job, best practice is to lazy-load its contents (e.g. make a method that opens the
file the first time you call it) rather than loading it in your job’s constructor or load_args(). Not only is this
more efficient, it’s necessary if you want to run your job in a Spark executor (because the file may not be in the
same place in a Spark driver).

Note: We suggest against sending Berkeley DBs to your job, as Berkeley DB is not forwards-compatible (so

110 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

a Berkeley DB that you construct on your computer may not be readable from within Hadoop). Use SQLite
databases instead. If all you need is an on-disk hash table, try out the sqlite3dbm module.

Changed in version 0.6.6: now accepts explicit type=str

Changed in version 0.6.8: fully supported on Spark, including local[*] master

MRJob.pass_arg_through(opt_str)
Pass the given argument through to the job.

MRJob.load_args(args)
Load command-line options into self.options.

Called from __init__() after configure_args().

Parameters args (list of str) – a list of command line arguments. None will be treated the same
as [].

Re-define if you want to post-process command-line arguments:

def load_args(self, args):
super(MRYourJob, self).load_args(args)

self.stop_words = self.options.stop_words.split(',')
...

MRJob.is_task()
True if this is a mapper, combiner, reducer, or Spark script.

This is mostly useful inside load_args(), to disable loading args when we aren’t running inside Hadoop.

2.10.9 Uploading support files

MRJob.FILES = []
Optional list of files to upload to the job’s working directory. These can be URIs or paths on the local filesystem.

Relative paths will be interpreted as relative to the directory containing the script (not the current working
directory). Environment variables and ~ in paths will be expanded.

If you want a file to be uploaded to a filename other than it’s own, append #<name> (e.g.
data/foo.json#bar.json).

If you need to dynamically generate a list of files, override files() instead.

New in version 0.6.4.

MRJob.DIRS = []
Optional list of directories to upload to the job’s working directory. These can be URIs or paths on the local
filesystem.

Relative paths will be interpreted as relative to the directory containing the script (not the current working
directory). Environment variables and ~ in paths will be expanded.

If you want a directory to be copied with a name other than it’s own, append #<name> (e.g. data/foo#bar).

If you need to dynamically generate a list of files, override dirs() instead.

New in version 0.6.4.

MRJob.ARCHIVES = []
Optional list of archives to upload and unpack in the job’s working directory. These can be URIs or paths on the
local filesystem.

2.10. mrjob.job - defining your job 111

mrjob Documentation, Release 0.7.4

Relative paths will be interpreted as relative to the directory containing the script (not the current working
directory). Environment variables and ~ in paths will be expanded.

By default, the directory will have the same name as the archive (e.g. foo.tar.gz/). To change the direc-
tory’s name, append #<name>:

ARCHIVES = ['data/foo.tar.gz#foo']

If you need to dynamically generate a list of files, override archives() instead.

New in version 0.6.4.

MRJob.files()
Like FILES, except that it can return a dynamically generated list of files to upload. Overriding this method
disables FILES.

Paths returned by this method are relative to the working directory (not the script). Note that the job runner will
always expand environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --files; this switch is handled separately.

New in version 0.6.4.

MRJob.dirs()
Like DIRS, except that it can return a dynamically generated list of directories to upload. Overriding this
method disables DIRS.

Paths returned by this method are relative to the working directory (not the script). Note that the job runner will
always expand environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --dirs; this switch is handled separately.

New in version 0.6.4.

MRJob.archives()
Like ARCHIVES, except that it can return a dynamically generated list of archives to upload and unpack. Over-
riding this method disables ARCHIVES.

Paths returned by this method are relative to the working directory (not the script). Note that the job runner will
always expand environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --archives; this switch is handled separately.

New in version 0.6.4.

2.10.10 Job runner configuration

classmethod MRJob.mr_job_script()
Path of this script. This returns the file containing this class, or None if there isn’t any (e.g. it was defined from
the command line interface.)

2.10.11 Running specific parts of jobs

MRJob.run_job()
Run the all steps of the job, logging errors (and debugging output if --verbose is specified) to STDERR and
streaming the output to STDOUT.

Called from run(). You’d probably only want to call this directly from automated tests.

MRJob.run_mapper(step_num=0)
Run the mapper and final mapper action for the given step.

112 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

Parameters step_num (int) – which step to run (0-indexed)

Called from run(). You’d probably only want to call this directly from automated tests.

MRJob.map_pairs(pairs, step_num=0)
Runs mapper_init(), mapper()/mapper_raw(), and mapper_final() for one map task in one
step.

Takes in a sequence of (key, value) pairs as input, and yields (key, value) pairs as output.

run_mapper() essentially wraps this method with code to handle reading/decoding input and writ-
ing/encoding output.

New in version 0.6.7.

MRJob.run_reducer(step_num=0)
Run the reducer for the given step.

Parameters step_num (int) – which step to run (0-indexed)

Called from run(). You’d probably only want to call this directly from automated tests.

MRJob.reduce_pairs(pairs, step_num=0)
Runs reducer_init(), reducer(), and reducer_final() for one reduce task in one step.

Takes in a sequence of (key, value) pairs as input, and yields (key, value) pairs as output.

run_reducer() essentially wraps this method with code to handle reading/decoding input and writ-
ing/encoding output.

New in version 0.6.7.

MRJob.run_combiner(step_num=0)
Run the combiner for the given step.

Parameters step_num (int) – which step to run (0-indexed)

If we encounter a line that can’t be decoded by our input protocol, or a tuple that can’t be encoded by our output
protocol, we’ll increment a counter rather than raising an exception. If –strict-protocols is set, then an exception
is raised

Called from run(). You’d probably only want to call this directly from automated tests.

MRJob.combine_pairs(pairs, step_num=0)
Runs combiner_init(), combiner(), and combiner_final() for one reduce task in one step.

Takes in a sequence of (key, value) pairs as input, and yields (key, value) pairs as output.

run_combiner() essentially wraps this method with code to handle reading/decoding input and writ-
ing/encoding output.

New in version 0.6.7.

2.10.12 Hadoop configuration

MRJob.HADOOP_INPUT_FORMAT = None
Optional name of an optional Hadoop InputFormat class, e.g.
’org.apache.hadoop.mapred.lib.NLineInputFormat’.

Passed to Hadoop with the first step of this job with the -inputformat option.

If you require more sophisticated behavior, try hadoop_input_format() or the hadoop_input_format
argument to mrjob.runner.MRJobRunner.__init__().

2.10. mrjob.job - defining your job 113

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

mrjob Documentation, Release 0.7.4

MRJob.hadoop_input_format()
Optional Hadoop InputFormat class to parse input for the first step of the job.

Normally, setting HADOOP_INPUT_FORMAT is sufficient; redefining this method is only for when you want
to get fancy.

MRJob.HADOOP_OUTPUT_FORMAT = None
Optional name of an optional Hadoop OutputFormat class, e.g.
’org.apache.hadoop.mapred.FileOutputFormat’.

Passed to Hadoop with the last step of this job with the -outputformat option.

If you require more sophisticated behavior, try hadoop_output_format() or the hadoop_output_format
argument to mrjob.runner.MRJobRunner.__init__().

MRJob.hadoop_output_format()
Optional Hadoop OutputFormat class to write output for the last step of the job.

Normally, setting HADOOP_OUTPUT_FORMAT is sufficient; redefining this method is only for when you want
to get fancy.

MRJob.JOBCONF = {}
Optional jobconf arguments we should always pass to Hadoop. This is a map from property name to value. e.g.:

{’stream.num.map.output.key.fields’: ’4’}

It’s recommended that you only use this to hard-code things that affect the semantics of your job, and leave
performance tweaks to the command line or whatever you use to launch your job.

MRJob.jobconf()
-D args to pass to hadoop streaming. This should be a map from property name to value. By default, returns
JOBCONF.

Changed in version 0.6.6: re-defining longer clobbers command-line --jobconf options.

MRJob.LIBJARS = []
Optional list of paths of jar files to run our job with using Hadoop’s -libjars option.

~ and environment variables in paths be expanded, and relative paths will be interpreted as relative to the
directory containing the script (not the current working directory).

If you require more sophisticated behavior, try overriding libjars().

MRJob.libjars()
Optional list of paths of jar files to run our job with using Hadoop’s -libjars option. Normally setting
LIBJARS is sufficient. Paths from LIBJARS are interpreted as relative to the the directory containing the
script (paths from the command-line are relative to the current working directory).

Note that ~ and environment variables in paths will always be expanded by the job runner (see libjars).

Changed in version 0.6.6: re-defining this no longer clobbers the command-line --libjars option

MRJob.PARTITIONER = None
Optional Hadoop partitioner class to use to determine how mapper output should be sorted and distributed to
reducers. For example: ’org.apache.hadoop.mapred.lib.HashPartitioner’.

If you require more sophisticated behavior, try partitioner().

MRJob.partitioner()
Optional Hadoop partitioner class to use to determine how mapper output should be sorted and distributed to
reducers.

By default, returns PARTITIONER.

You probably don’t need to re-define this; it’s just here for completeness.

114 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

2.10.13 Hooks for testing

MRJob.sandbox(stdin=None, stdout=None, stderr=None)
Redirect stdin, stdout, and stderr for automated testing.

You can set stdin, stdout, and stderr to file objects. By default, they’ll be set to empty BytesIO objects. You can
then access the job’s file handles through self.stdin, self.stdout, and self.stderr. See Testing
jobs for more information about testing.

You may call sandbox multiple times (this will essentially clear the file handles).

stdin is empty by default. You can set it to anything that yields lines:

mr_job.sandbox(stdin=BytesIO(b'some_data\n'))

or, equivalently:

mr_job.sandbox(stdin=[b'some_data\n'])

For convenience, this sandbox() returns self, so you can do:

mr_job = MRJobClassToTest().sandbox()

Simple testing example:

mr_job = MRYourJob.sandbox()
self.assertEqual(list(mr_job.reducer('foo', ['a', 'b'])), [...])

More complex testing example:

from BytesIO import BytesIO

from mrjob.parse import parse_mr_job_stderr
from mrjob.protocol import JSONProtocol

mr_job = MRYourJob(args=[...])

fake_input = '"foo"\t"bar"\n"foo"\t"baz"\n'
mr_job.sandbox(stdin=BytesIO(fake_input))

mr_job.run_reducer(link_num=0)

self.assertEqual(mrjob.stdout.getvalue(), ...)
self.assertEqual(parse_mr_job_stderr(mr_job.stderr), ...)

Note: If you are using Spark, it’s recommended you only pass in io.BytesIO or other serializable alterna-
tives to file objects. stdin, stdout, and stderr get stored as job attributes, which means if they aren’t serializable,
neither is the job instance or its methods.

2.11 mrjob.local - simulate Hadoop locally with subprocesses

class mrjob.local.LocalMRJobRunner(**kwargs)
Runs an MRJob locally, for testing purposes. Invoked when you run your job with -r local.

Unlike InlineMRJobRunner, this actually spawns multiple subprocesses for each task.

It’s rare to need to instantiate this class directly (see __init__() for details).

New in version 0.6.8: can run Spark steps as well, on the local-cluster Spark master.

2.11. mrjob.local - simulate Hadoop locally with subprocesses 115

http://docs.python.org/2/library/io.html#io.BytesIO

mrjob Documentation, Release 0.7.4

LocalMRJobRunner.__init__(**kwargs)
Arguments to this constructor may also appear in mrjob.conf under runners/local.

LocalMRJobRunner‘s constructor takes the same keyword args as MRJobRunner. However, please note:

•cmdenv is combined with combine_local_envs()

•python_bin defaults to sys.executable (the current python interpreter)

•hadoop_input_format, hadoop_output_format, and partitioner are ignored because they require Java. If
you need to test these, consider starting up a standalone Hadoop instance and running your job with -r
hadoop.

2.12 mrjob.parse - log parsing

Utilities for parsing errors, counters, and status messages.

mrjob.parse.is_s3_uri(uri)
Return True if uri can be parsed into an S3 URI, False otherwise.

mrjob.parse.is_uri(uri)
Return True if uri is a URI and contains :// (we only care about URIs that can describe files)

mrjob.parse.parse_mr_job_stderr(stderr, counters=None)
Parse counters and status messages out of MRJob output.

Parameters

• stderr – a filehandle, a list of lines (bytes), or bytes

• counters – Counters so far, to update; a map from group (string to counter name (string)
to count.

Returns a dictionary with the keys counters, statuses, other:

•counters: counters so far; same format as above

•statuses: a list of status messages encountered

•other: lines (strings) that aren’t either counters or status messages

mrjob.parse.parse_s3_uri(uri)
Parse an S3 URI into (bucket, key)

>>> parse_s3_uri('s3://walrus/tmp/')
('walrus', 'tmp/')

If uri is not an S3 URI, raise a ValueError

mrjob.parse.to_uri(path_or_uri)
If path_or_uri is not a URI already, convert it to a file:/// URI.

2.13 mrjob.protocol - input and output

Protocols translate raw bytes into key, value pairs.

Typically, protocols encode a key and value into bytes, and join them together with a tab character.

However, protocols with Value in their name ignore keys and simply read/write values (with key read in as None),
allowing you to read and write data in arbitrary formats.

116 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

For more information, see Protocols and Writing custom protocols.

2.13.1 Strings

class mrjob.protocol.RawValueProtocol
Just output value (a str), and discard key (key is read in as None).

This is the default protocol used by jobs to read input.

This is an alias for RawValueProtocol on Python 2 and TextValueProtocol on Python 3.

class mrjob.protocol.BytesValueProtocol
Read line (without trailing newline) directly into value (key is always None). Output value (bytes) directly,
discarding key.

This is the default protocol used by jobs to read input on Python 2.

Warning: Typical usage on Python 2 is to have your mapper parse (byte) strings out of your input
files, and then include them in the output to the reducer. Since this output is then (by default) JSON-
encoded, encoding will fail if the bytestrings are not UTF-8 decodable. If this is an issue, consider using
TextValueProtocol instead.

class mrjob.protocol.TextValueProtocol
Attempt to UTF-8 decode line (without trailing newline) into value, falling back to latin-1. (key is always
None). Output value UTF-8 encoded, discarding key.

This is the default protocol used by jobs to read input on Python 3.

This is a good solution for reading text files which are mostly ASCII but may have some other bytes of unknown
encoding (e.g. logs).

If you wish to enforce a particular encoding, use BytesValueProtocol instead:

class MREncodingEnforcer(MRJob):

INPUT_PROTOCOL = BytesValueProtocol

def mapper(self, _, value):
value = value.decode('utf_8')
...

class mrjob.protocol.RawProtocol
Output key (str) and value (str), separated by a tab character.

This is an alias for BytesProtocol on Python 2 and TextProtocol on Python 3.

class mrjob.protocol.BytesProtocol
Encode (key, value) (bytestrings) as key and value separated by a tab.

If key or value is None, don’t include a tab. When decoding a line with no tab in it, value will be None.

When reading from a line with multiple tabs, we break on the first one.

Your key should probably not be None or have tab characters in it, but we don’t check.

class mrjob.protocol.TextProtocol
UTF-8 encode key and value (unicode strings) and join them with a tab character. When reading input, we
fall back to latin-1 if we can’t UTF-8 decode the line.

If key or value is None, don’t include a tab. When decoding a line with no tab in it, value will be None.

When reading from a line with multiple tabs, we break on the first one.

2.13. mrjob.protocol - input and output 117

mrjob Documentation, Release 0.7.4

Your key should probably not be None or have tab characters in it, but we don’t check.

2.13.2 JSON

class mrjob.protocol.JSONProtocol
Encode (key, value) as two JSONs separated by a tab.

This is the default protocol used by jobs to write output and communicate between steps.

This is an alias for the first one of UltraJSONProtocol, RapidJSONProtocol,
SimpleJSONProtocol, or StandardJSONProtocol for which the underlying library is available.

class mrjob.protocol.UltraJSONProtocol
Implements JSONProtocol using the ujson library.

Warning: ujson is about five times faster than the standard implementation, but is more willing to encode
things that aren’t strictly JSON-encodable, including sets, dictionaries with tuples as keys, UTF-8 encoded
bytes, and objects (!). Relying on this behavior won’t stop your job from working, but it can make your job
dependent on ujson, rather than just using it as a speedup.

Note: ujson also differs from the standard implementation in that it doesn’t add spaces to its JSONs
({"foo":"bar"} versus {"foo": "bar"}). This probably won’t affect anything but test cases and
readability.

class mrjob.protocol.RapidJSONProtocol
Implements JSONProtocol using the rapidjson library.

class mrjob.protocol.SimpleJSONProtocol
Implements JSONProtocol using the simplejson library.

class mrjob.protocol.StandardJSONProtocol
Implements JSONProtocol using Python’s built-in JSON library.

Note: The built-in json library is (appropriately) strict about the JSON standard; it won’t accept dictionaries
with non-string keys, sets, or (on Python 3) bytestrings.

class mrjob.protocol.JSONValueProtocol
Encode value as a JSON and discard key (key is read in as None).

This is an alias for the first one of UltraJSONValueProtocol, RapidJSONValueProtocol,
SimpleJSONValueProtocol, or StandardJSONValueProtocol for which the underlying library
is available.

class mrjob.protocol.UltraJSONValueProtocol
Implements JSONValueProtocol using the ujson library.

class mrjob.protocol.RapidJSONValueProtocol
Implements JSONValueProtocol using the rapidjson library.

class mrjob.protocol.SimpleJSONValueProtocol
Implements JSONValueProtocol using the simplejson library.

class mrjob.protocol.StandardJSONValueProtocol
Implements JSONValueProtocol using Python’s built-in JSON library.

118 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

2.13.3 Repr

class mrjob.protocol.ReprProtocol
Encode (key, value) as two reprs separated by a tab.

This only works for basic types (we use mrjob.util.safeeval()).

Warning: The repr format changes between different versions of Python (for example, braces for sets in
Python 2.7, and different string contants in Python 3). Plan accordingly.

class mrjob.protocol.ReprValueProtocol
Encode value as a repr and discard key (key is read in as None).

See ReprProtocol for details.

2.13.4 Pickle

class mrjob.protocol.PickleProtocol
Encode (key, value) as two string-escaped pickles separated by a tab.

We string-escape the pickles to avoid having to deal with stray \t and \n characters, which would confuse
Hadoop Streaming.

Ugly, but should work for any type.

Warning: Pickling is only backwards-compatible across Python versions. If your job uses this as an output
protocol, you should use at least the same version of Python to parse the job’s output. Vice versa for using
this as an input protocol.

class mrjob.protocol.PickleValueProtocol
Encode value as a string-escaped pickle and discard key (key is read in as None).

See PickleProtocol for details.

2.14 mrjob.spark.runner - run on any Spark cluster

2.14.1 Job Runner

class mrjob.spark.runner.SparkMRJobRunner(max_output_files=None, mrjob_cls=None,
**kwargs)

Runs a MRJob on your Spark cluster (with or without Hadoop). Invoked when you run your job with -r
spark.

See Running on your Spark cluster for more information.

The Spark runner can also run “classic” MRJobs directly on Spark, without using Hadoop streaming. See
Running “classic” MRJobs on Spark.

New in version 0.6.8.

2.14. mrjob.spark.runner - run on any Spark cluster 119

mrjob Documentation, Release 0.7.4

2.15 mrjob.retry - retry on transient errors

class mrjob.retry.RetryWrapper(wrapped, retry_if, backoff=15, multiplier=1.5, max_tries=10,
max_backoff=1200, unwrap_methods=())

Handle transient errors, with configurable backoff.

This class can wrap any object. The wrapped object will behave like the original one, except that if you call a
function and it raises a retriable exception, we’ll back off for a certain number of seconds and call the function
again, until it succeeds or we get a non-retriable exception.

RetryWrapper.__init__(wrapped, retry_if, backoff=15, multiplier=1.5, max_tries=10,
max_backoff=1200, unwrap_methods=())

Wrap the given object

Parameters

• wrapped – the object to wrap

• retry_if – a method that takes an exception, and returns whether we should retry

• backoff (float) – the number of seconds to wait the first time we get a retriable error

• multiplier (float) – if we retry multiple times, the amount to multiply the backoff time
by every time we get an error

• max_tries (int) – how many tries we get. 0 means to keep trying forever

• max_backoff (float) – cap the backoff at this number of seconds

• unwrap_methods (sequence) – names of methods to call with this object as self rather
than retrying on transient errors (e.g. methods that return a paginator)

2.16 mrjob.runner - base class for all runners

class mrjob.runner.MRJobRunner(mr_job_script=None, conf_paths=None, extra_args=None,
hadoop_input_format=None, hadoop_output_format=None,
input_paths=None, output_dir=None, partitioner=None,
sort_values=None, stdin=None, steps=None,
step_output_dir=None, **opts)

Abstract base class for all runners

MRJobRunner.__init__(mr_job_script=None, conf_paths=None, extra_args=None,
hadoop_input_format=None, hadoop_output_format=None, in-
put_paths=None, output_dir=None, partitioner=None, sort_values=None,
stdin=None, steps=None, step_output_dir=None, **opts)

All runners take the following keyword arguments:

Parameters

• mr_job_script (str) – the path of the .py file containing the MRJob. If this is None,
you won’t actually be able to run() the job, but other utilities (e.g. ls()) will work.

• conf_paths (None or list) – List of config files to combine and use, or None to search
for mrjob.conf in the default locations.

• extra_args (list of str) – a list of extra cmd-line arguments to pass to the mr_job script.
This is a hook to allow jobs to take additional arguments.

• hadoop_input_format (str) – name of an optional Hadoop InputFormat class.
Passed to Hadoop along with your first step with the -inputformat option. Note that if

120 Chapter 2. Reference

http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#float
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

you write your own class, you’ll need to include it in your own custom streaming jar (see
hadoop_streaming_jar).

• hadoop_output_format (str) – name of an optional Hadoop OutputFormat class.
Passed to Hadoop along with your first step with the -outputformat option. Note that
if you write your own class, you’ll need to include it in your own custom streaming jar (see
hadoop_streaming_jar).

• input_paths (list of str) – Input files for your job. Supports globs and recursively walks
directories (e.g. [’data/common/’, ’data/training/*.gz’]). If this is left
blank, we’ll read from stdin

• output_dir (str) – An empty/non-existent directory where Hadoop should put the final
output from the job. If you don’t specify an output directory, we’ll output into a subdirec-
tory of this job’s temporary directory. You can control this from the command line with
--output-dir. This option cannot be set from configuration files. If used with the
hadoop runner, this path does not need to be fully qualified with hdfs:// URIs because
it’s understood that it has to be on HDFS.

• partitioner (str) – Optional name of a Hadoop partitioner class, e.g.
’org.apache.hadoop.mapred.lib.HashPartitioner’. Hadoop stream-
ing will use this to determine how mapper output should be sorted and distributed to
reducers.

• sort_values (bool) – if true, set partitioners and jobconf variables so that reducers to
receive the values associated with any key in sorted order (sorted by their encoded value).
Also known as secondary sort.

• stdin – an iterable (can be a BytesIO or even a list) to use as stdin. This is a hook for
testing; if you set stdin via sandbox(), it’ll get passed through to the runner. If for
some reason your lines are missing newlines, we’ll add them; this makes it easier to write
automated tests.

• steps – a list of descriptions of steps to run (see mrjob.step - represent Job Steps for
description formats)

• step_output_dir (str) – An empty/non-existent directory where Hadoop should put
output from all steps other than the last one (this only matters for multi-step jobs). Currently
ignored by local runners.

2.16.1 Running your job

MRJobRunner.run()
Run the job, and block until it finishes.

Raise StepFailedException if there are any problems (except on InlineMRJobRunner, where we
raise the actual exception that caused the step to fail).

MRJobRunner.cat_output()
Stream the job’s output, as a stream of bytes. If there are multiple output files, there will be an empty bytestring
(b’’) between them.

Like Hadoop input formats, we ignore files and subdirectories whose names start with "_" or "." (e.g.
_SUCCESS, _logs/, .part-00000.crc.

Changed in version 0.6.8: Ignore file/dirnames starting with "." as well as "_".

MRJobRunner.cleanup(mode=None)
Clean up running jobs, temp files, and logs, subject to the cleanup option passed to the constructor.

2.16. mrjob.runner - base class for all runners 121

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

If you create your runner in a with block, cleanup() will be called automatically:

with mr_job.make_runner() as runner:
...

cleanup() called automatically here

Parameters mode – override cleanup passed into the constructor. Should be a list of strings from
CLEANUP_CHOICES

mrjob.options.CLEANUP_CHOICES = [’ALL’, ‘CLOUD_TMP’, ‘CLUSTER’, ‘HADOOP_TMP’, ‘JOB’, ‘LOCAL_TMP’, ‘LOGS’, ‘NONE’, ‘TMP’]
cleanup options:

•’ALL’: delete logs and local and remote temp files; stop cluster if on EMR and the job is not done when
cleanup is run.

•’CLOUD_TMP’: delete temp files on cloud storage (e.g. S3) only

•’CLUSTER’: terminate the cluster if on EMR and the job is not done on cleanup

•’HADOOP_TMP’: delete temp files on HDFS only

•’JOB’: stop job if on EMR and the job is not done when cleanup runs

•’LOCAL_TMP’: delete local temp files only

•’LOGS’: delete logs only

•’NONE’: delete nothing

•’TMP’: delete local, HDFS, and cloud storage temp files, but not logs

2.16.2 Run Information

MRJobRunner.counters()
Get counters associated with this run in this form:

[{'group name': {'counter1': 1, 'counter2': 2}},
{'group name': ...}]

The list contains an entry for every step of the current job.

MRJobRunner.get_hadoop_version()
Return the version number of the Hadoop environment as a string if Hadoop is being used or simulated. Return
None if not applicable.

EMRJobRunner infers this from the cluster. HadoopJobRunner gets this from hadoop version.
LocalMRJobRunner has an additional hadoop_version option to specify which version it simulates.
InlineMRJobRunner does not simulate Hadoop at all.

MRJobRunner.get_job_key()
Get the unique key for the job run by this runner. This has the format
label.owner.date.time.microseconds

2.16.3 Configuration

MRJobRunner.get_opts()
Get options set for this runner, as a dict.

122 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

2.16.4 File management

MRJobRunner.fs
Filesystem object for the local filesystem.

class mrjob.fs.base.Filesystem
Some simple filesystem operations that are common across the local filesystem, S3, GCS, HDFS, and remote
machines via SSH.

Different runners provide functionality for different filesystems via their fs attribute. Generally a runner will
wrap one or more filesystems with mrjob.fs.composite.CompositeFilesystem.

Schemes supported:

•mrjob.fs.gcs.GCSFilesystem: gs://

•mrjob.fs.hadoop.HadoopFilesystem: hdfs:// and other URIs

•mrjob.fs.local.LocalFilesystem: paths and file:// URIs

•mrjob.fs.s3.S3Filesystem: s3://, s3a://, s3n://,

•mrjob.fs.ssh.SSHFilesystem: ssh://

Changed in version 0.6.12: LocalFilesystem added support for file:// URIs

can_handle_path(path)
Can we handle this path at all?

cat(path_glob)
cat all files matching path_glob, decompressing if necessary

This yields bytes, which don’t necessarily correspond to lines (see #1544). If multiple files are catted,
yields b’’ between each file.

du(path_glob)
Get the total size of files matching path_glob

Corresponds roughly to: hadoop fs -du path_glob

exists(path_glob)
Does the given path/URI exist?

Corresponds roughly to: hadoop fs -test -e path_glob

join(path, *paths)
Join paths onto path (which may be a URI)

ls(path_glob)
Recursively list all files in the given path.

We don’t return directories for compatibility with S3 (which has no concept of them)

Corresponds roughly to: hadoop fs -ls -R path_glob

md5sum(path)
Generate the md5 sum of the file at path

mkdir(path)
Create the given dir and its subdirs (if they don’t already exist). On cloud filesystems (e.g. S3), also create
the corresponding bucket as needed

Corresponds roughly to: hadoop fs -mkdir -p path

New in version 0.6.8: creates buckets on cloud filesystems

2.16. mrjob.runner - base class for all runners 123

mrjob Documentation, Release 0.7.4

put(src, path)
Upload a file on the local filesystem (src) to path. Like with shutil.copyfile(), path should be the
full path of the new file, not a directory which should contain it.

Corresponds roughly to hadoop fs -put src path.

New in version 0.6.8.

rm(path_glob)
Recursively delete the given file/directory, if it exists

Corresponds roughly to: hadoop fs -rm -R path_glob

touchz(path)
Make an empty file in the given location. Raises an error if a non-zero length file already exists in that
location.

Correponds to: hadoop fs -touchz path

2.17 mrjob.step - represent Job Steps

Representations of job steps, to use in your MRJob‘s steps() method.

Because the runner just needs to know how to invoke your MRJob script, not how it works insternally, each step
instance’s description() method produces a simplified, JSON-able description of the step, to pass to the runner.

2.17.1 Steps

class mrjob.step.MRStep(**kwargs)
Represents steps handled by the script containing your job.

Used by MRJob.steps. See Multi-step jobs for sample usage.

Takes the following keyword arguments: combiner, combiner_cmd, combiner_final, combiner_init, com-
biner_pre_filter, mapper, mapper_cmd, mapper_final, mapper_init, mapper_pre_filter, mapper_raw, reducer,
reducer_cmd, reducer_final, reducer_init, reducer_pre_filter. These should be set to None or a function with
the same signature as the corresponding method in MRJob.

Also accepts jobconf, a dictionary with custom jobconf arguments to pass to hadoop.

A MRStep’s description looks like:

{
'type': 'streaming',
'mapper': { ... },
'combiner': { ... },
'reducer': { ... },
'jobconf': { ... }, # dict of Hadoop configuration properties

}

At least one of mapper, combiner and reducer need be included. jobconf is completely optional.

mapper, combiner, and reducer are either handled by the script containing your job definition, in which
case they look like:

{
'type': 'script',
'pre_filter': 'grep -v bad', # optional cmd to filter input

}

124 Chapter 2. Reference

http://docs.python.org/2/library/shutil.html#shutil.copyfile

mrjob Documentation, Release 0.7.4

or they simply run a command, which looks like:

{
'type': 'command',
'command': 'cut -f 1-2', # command to run, as a string

}

class mrjob.step.JarStep(jar, **kwargs)
Represents a running a custom Jar as a step.

Accepts the following keyword arguments:

Parameters

• jar – The local path to the Jar. On EMR, this can also be an s3:// URI, or file:// to
reference a jar on the local filesystem of your EMR instance(s).

• args – (optional) A list of arguments to the jar. Use mrjob.step.INPUT and OUTPUT
to interpolate input and output paths.

• jobconf – (optional) A dictionary of Hadoop properties

• main_class – (optional) The main class to run from the jar. If not specified, Hadoop will
use the main class in the jar’s manifest file.

jar can also be passed as a positional argument

See Jar steps for sample usage.

Sample description of a JarStep:

{
'type': 'jar',
'jar': 'binks.jar.jar',
'main_class': 'MyMainMan', # optional
'args': ['argh', 'argh'] # optional
'jobconf': { ... } # optional

}

To give your jar access to input files, an empty output directory, configuration properties, and libjars managed
by mrjob, you may include INPUT, OUTPUT, and GENERIC_ARGS in args.

class mrjob.step.SparkStep(spark, **kwargs)
Represents running a Spark step defined in your job.

Accepts the following keyword arguments:

Parameters

• spark – function containing your Spark code with same function signature as spark()

• jobconf – (optional) A dictionary of Hadoop properties

• spark_args – (optional) an array of arguments to pass to spark-submit (e.g.
[’--executor-memory’, ’2G’]).

Sample description of a SparkStep:

{
'type': 'spark',
'jobconf': { ... }, # optional
'spark_args': ['--executor-memory', '2G'], # optional

}

2.17. mrjob.step - represent Job Steps 125

mrjob Documentation, Release 0.7.4

class mrjob.step.SparkJarStep(jar, main_class, **kwargs)
Represents a running a separate Jar through Spark

Accepts the following keyword arguments:

Parameters

• jar – The local path to the Python script to run. On EMR, this can also be an s3:// URI,
or file:// to reference a jar on the local filesystem of your EMR instance(s).

• main_class – Your application’s main class (e.g.
’org.apache.spark.examples.SparkPi’)

• args – (optional) A list of arguments to the script. Use mrjob.step.INPUT and
OUTPUT to interpolate input and output paths.

• jobconf – (optional) A dictionary of Hadoop properties

• spark_args – (optional) an array of arguments to pass to spark-submit (e.g.
[’--executor-memory’, ’2G’]).

jar and main_class can also be passed as positional arguments

Sample description of a SparkJarStep:

{
'type': 'spark_jar',
'jar': 'binks.jar.jar',
'main_class': 'MyMainMan', # optional
'args': ['argh', 'argh'], # optional
'jobconf': { ... }, # optional
'spark_args': ['--executor-memory', '2G'], # optional

}

To give your Spark JAR access to input files and an empty output directory managed by mrjob, you may include
INPUT and OUTPUT in args.

class mrjob.step.SparkScriptStep(script, **kwargs)
Represents a running a separate Python script through Spark

Accepts the following keyword arguments:

Parameters

• script – The local path to the Python script to run. On EMR, this can also be an s3://
URI, or file:// to reference a jar on the local filesystem of your EMR instance(s).

• args – (optional) A list of arguments to the script. Use mrjob.step.INPUT and
OUTPUT to interpolate input and output paths.

• jobconf – (optional) A dictionary of Hadoop properties

• spark_args – (optional) an array of arguments to pass to spark-submit (e.g.
[’--executor-memory’, ’2G’]).

script can also be passed as a positional argument

Sample description of a ScriptStep:

{
'type': 'spark_script',
'script': 'my_spark_script.py',
'args': ['script_arg1', 'script_arg2'],
'jobconf': { ... }, # optional

126 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

'spark_args': ['--executor-memory', '2G'], # optional
}

To give your Spark script access to input files and an empty output directory managed by mrjob, you may include
INPUT and OUTPUT in args.

2.17.2 Argument interpolation

Use these constants in your step’s args and mrjob will automatically replace them before running your step.

mrjob.step.INPUT = ‘<input>’
If passed as an argument to JarStep, SparkJarStep, or SparkScriptStep, it’ll be replaced with the
step’s input path(s). If there are multiple paths, they’ll be joined with commas.

mrjob.step.OUTPUT = ‘<output>’
If this is passed as an argument to JarStep, SparkJarStep, or SparkScriptStep, it’ll be replaced
with the step’s output path

mrjob.step.GENERIC_ARGS = ‘<generic args>’
If this is passed as an argument to JarStep, it’ll be replaced with generic hadoop args (-D and -libjars)

2.18 mrjob.setup - job environment setup

Utilities for setting up the environment jobs run in by uploading files and running setup scripts.

The general idea is to use Hadoop DistributedCache-like syntax to find and parse expressions like
/path/to/file#name_in_working_dir into “path dictionaries” like {’type’: ’file’, ’path’:
’/path/to/file’, ’name’: ’name_in_working_dir’}}.

You can then pass these into a WorkingDirManager to keep track of which files need to be up-
loaded, catch name collisions, and assign names to unnamed paths (e.g. /path/to/file#). Note that
WorkingDirManager.name() can take a path dictionary as keyword arguments.

If you need to upload files from the local filesystem to a place where Hadoop can see them (HDFS or S3), we provide
UploadDirManager.

Path dictionaries are meant to be immutable; all state is handled by manager classes.

class mrjob.setup.UploadDirManager(prefix)
Represents a directory on HDFS or S3 where we want to upload local files for consumption by Hadoop.

UploadDirManager tries to give files the same name as their filename in the path (for ease of debugging),
but handles collisions gracefully.

UploadDirManager assumes URIs to not need to be uploaded and thus does not store them. uri() maps
URIs to themselves.

add(path)

Add a path. If path hasn’t been added before, assign it a name. If path is a URI don’t add it; just re-
turn the URI.

Returns the URI assigned to the path

path_to_uri()
Get a map from path to URI for all paths that were added, so we can figure out which files we need to
upload.

2.18. mrjob.setup - job environment setup 127

mrjob Documentation, Release 0.7.4

uri(path)
Get the URI for the given path. If path is a URI, just return it.

class mrjob.setup.WorkingDirManager(archive_file_suffix=’‘)
Represents the working directory of hadoop/Spark tasks (or bootstrap commands in the cloud).

To support Hadoop’s distributed cache, paths can be for ordinary files, or for archives (which are automatically
uncompressed into a directory by Hadoop).

When adding a file, you may optionally assign it a name; if you don’t; we’ll lazily assign it a name as needed.
Name collisions are not allowed, so being lazy makes it easier to avoid unintended collisions.

If you wish, you may assign multiple names to the same file, or add a path as both a file and an archive (though
not mapped to the same name).

add(type, path, name=None)
Add a path as either a file or an archive, optionally assigning it a name.

Parameters

• type – either ’archive’ or ’file’

• path – path/URI to add

• name – optional name that this path must be assigned, or None to assign this file a name
later.

if type is archive, we’ll also add path as an auto-named archive_file. This reserves space in the
working dir in case we need to copy the archive into the working dir and un-archive it ourselves.

name(type, path, name=None)
Get the name for a path previously added to this WorkingDirManager, assigning one as needed.

This is primarily for getting the name of auto-named files. If the file was added with an assigned name,
you must include it (and we’ll just return name).

We won’t ever give an auto-name that’s the same an assigned name (even for the same path and type).

Parameters

• type – either ’archive’ or ’file’

• path – path/URI

• name – known name of the file

name_to_path(type=None)
Get a map from name (in the setup directory) to path for all known files/archives, so we can build -file
and -archive options to Hadoop (or fake them in a bootstrap script).

Parameters type – either ’archive’ or ’file’

paths(type=None)
Get a set of all paths tracked by this WorkingDirManager.

mrjob.setup.name_uniquely(path, names_taken=(), proposed_name=None, unhide=False,
strip_ext=False, suffix=’‘)

Come up with a unique name for path.

Parameters

• names_taken – a dictionary or set of names not to use.

• proposed_name – name to use if it is not taken. If this is not set, we propose a name
based on the filename.

• unhide – make sure final name doesn’t start with periods or underscores

128 Chapter 2. Reference

mrjob Documentation, Release 0.7.4

• strip_ext – if we propose a name, it shouldn’t have a file extension

• suffix – if set to a string, add this to the end of any filename we propose. Should include
the ..

If the proposed name is taken, we add a number to the end of the filename, keeping the extension the same. For
example:

>>> name_uniquely('foo.txt', {'foo.txt'})
'foo-1.txt'
>>> name_uniquely('bar.tar.gz', {'bar'}, strip_ext=True)
'bar-1'

mrjob.setup.parse_legacy_hash_path(type, path, must_name=None)
Parse hash paths from old setup/bootstrap options.

This is similar to parsing hash paths out of shell commands (see parse_setup_cmd()) except that we pass
in path type explicitly, and we don’t always require the # character.

Parameters

• type – Type of the path (’archive’ or ’file’)

• path – Path to parse, possibly with a #

• must_name – If set, use path‘s filename as its name if there is no ’#’ in path, and raise
an exception if there is just a ’#’ with no name. Set must_name to the name of the rel-
evant option so we can print a useful error message. This is intended for options like
upload_files that merely upload a file without tracking it.

mrjob.setup.parse_setup_cmd(cmd)
Parse a setup/bootstrap command, finding and pulling out Hadoop Distributed Cache-style paths (“hash paths”).

Parameters cmd (string) – shell command to parse

Returns a list containing dictionaries (parsed hash paths) and strings (parts of the original command,
left unparsed)

Hash paths look like path#name, where path is either a local path or a URI pointing to something we want
to upload to Hadoop/EMR, and name is the name we want it to have when we upload it; name is optional (no
name means to pick a unique one).

If name is followed by a trailing slash, that indicates path is an archive (e.g. a tarball), and should be unarchived
into a directory on the remote system. The trailing slash will also be kept as part of the original command.

If path is followed by a trailing slash, that indicates path is a directory and should be tarballed and later unar-
chived into a directory on the remote system. The trailing slash will also be kept as part of the original command.
You may optionally include a slash after name as well (this will only result in a single slash in the final com-
mand).

Parsed hash paths are dicitionaries with the keys path, name, and type (either ’file’, ’archive’, or
’dir’).

Most of the time, this function will just do what you expect. Rules for finding hash paths:

•we only look for hash paths outside of quoted strings

•path may not contain quotes or whitespace

•path may not contain : or = unless it is a URI (starts with <scheme>://); this allows you to do stuff
like export PYTHONPATH=$PYTHONPATH:foo.egg#.

•name may not contain whitespace or any of the following characters: ’":;><|=/#, so you can do stuff
like sudo dpkg -i fooify.deb#; fooify bar

2.18. mrjob.setup - job environment setup 129

http://docs.python.org/2/library/string.html#module-string

mrjob Documentation, Release 0.7.4

If you really want to include forbidden characters, you may use backslash escape sequences in path and name.
(We can’t guarantee Hadoop/EMR will accept them though!). Also, remember that shell syntax allows you to
concatenate strings like""this.

Environment variables and ~ (home dir) in path will be resolved (use backslash escapes to stop this). We
don’t resolve name because it doesn’t make sense. Environment variables and ~ elsewhere in the command are
considered to be part of the script and will be resolved on the remote system.

2.19 mrjob.util - general utility functions

Utility functions for MRJob

mrjob.util.cmd_line(args)
build a command line that works in a shell.

mrjob.util.expand_path(path)
Resolve ~ (home dir) and environment variables in path.

If path is None, return None.

mrjob.util.file_ext(filename)
return the file extension, including the .

>>> file_ext('foo.tar.gz')
'.tar.gz'

>>> file_ext('.emacs')
''

>>> file_ext('.mrjob.conf')
'.conf'

mrjob.util.log_to_null(name=None)
Set up a null handler for the given stream, to suppress “no handlers could be found” warnings.

mrjob.util.log_to_stream(name=None, stream=None, format=None, level=None, debug=False)
Set up logging.

Parameters

• name (str) – name of the logger, or None for the root logger

• stream (file object) – stream to log to (default is sys.stderr)

• format (str) – log message format (default is ‘%(message)s’)

• level – log level to use

• debug (bool) – quick way of setting the log level: if true, use logging.DEBUG, otherwise
use logging.INFO

mrjob.util.random_identifier()
A random 16-digit hex string.

mrjob.util.safeeval(expr, globals=None, locals=None)
Like eval, but with nearly everything in the environment blanked out, so that it’s difficult to cause mischief.

globals and locals are optional dictionaries mapping names to values for those names (just like in eval()).

mrjob.util.save_current_environment(*args, **kwds)
Context manager that saves os.environ and loads it back again after execution

130 Chapter 2. Reference

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#bool
http://docs.python.org/2/library/functions.html#eval

mrjob Documentation, Release 0.7.4

mrjob.util.save_cwd(*args, **kwds)
Context manager that saves the current working directory, and chdir’s back to it after execution.

mrjob.util.save_sys_path(*args, **kwds)
Context manager that saves sys.path and restores it after execution.

mrjob.util.save_sys_std(*args, **kwds)
Context manager that saves the current values of sys.stdin, sys.stdout, and sys.stderr, and flushes these filehan-
dles before and after switching them out.

mrjob.util.shlex_split(s)
Wrapper around shlex.split(), but convert to str if Python version < 2.7.3 when unicode support was added.

mrjob.util.strip_microseconds(delta)
Return the given datetime.timedelta, without microseconds.

Useful for printing datetime.timedelta objects.

mrjob.util.to_lines(chunks)
Take in data as a sequence of bytes, and yield it, one line at a time.

Only breaks lines on \n (not \r), and does not add a trailing newline.

For efficiency, passes through anything with a readline() attribute.

mrjob.util.unarchive(archive_path, dest)
Extract the contents of a tar or zip file at archive_path into the directory dest.

Parameters

• archive_path (str) – path to archive file

• dest (str) – path to directory where archive will be extracted

dest will be created if it doesn’t already exist.

tar files can be gzip compressed, bzip2 compressed, or uncompressed. Files within zip files can be deflated or
stored.

mrjob.util.unique(items)
Yield items from item in order, skipping duplicates.

mrjob.util.which(cmd, path=None)
Like the UNIX which command: search in path for the executable named cmd. path defaults to PATH. Returns
None if no such executable found.

This is basically shutil.which() (which was introduced in Python 3.3) without the mode argument. Best
practice is to always specify path as a keyword argument.

mrjob.util.zip_dir(dir, out_path, filter=None, prefix=’‘)
Compress the given dir into a zip file at out_path.

If we encounter symlinks, include the actual file, not the symlink.

Parameters

• dir (str) – dir to tar up

• out_path (str) – where to write the tarball too

• filter – if defined, a function that takes paths (relative to dir and returns True if we
should keep them

• prefix (str) – subdirectory inside the tarball to put everything into (e.g. ’mrjob’)

2.19. mrjob.util - general utility functions 131

http://docs.python.org/2/library/datetime.html#datetime.timedelta
http://docs.python.org/2/library/datetime.html#datetime.timedelta
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

132 Chapter 2. Reference

CHAPTER 3

What’s New

For a complete list of changes, see CHANGES.txt

3.1 0.7.4

3.1.1 Docker on EMR

This release adds support for Docker on EMR, which was released with AMI version 6.0.0. This is enabled by setting
docker_image to point at your image.

There is also a docker_mounts option, and, if you want to host your image on a private ECR repo instead of Docker
Hub, a docker_client_config option (though with AMIs 6.1.0 and later, you can also auto-authenticate to ECR; see this
page).

As a result of adding Docker support, the default image_version on EMR is 6.0.0. Also, on EMR and Dataproc we
used to literally bootstrap mrjob by copying it to Python’s root package directory, but as this won’t put mrjob into a
Docker image, mrjob is now bootstrapped via py_files, like on every other runner.

3.1.2 Concurrent Steps on EMR clusters

This release also supports concurrent steps on EMR clusters, a feature introduced in AMI 5.28.0. The
max_concurrent_steps option controls both the concurrency level of a newly launched cluster, and how much con-
currency we will accept when joining a pooled cluster.

To prevent steps from the same job attempting to run simultaneously, mrjob will now submit steps of a multi-step one
at a time (after the previous one completes) on clusters running AMI 5.28.0 or later. This can be changed with the
add_steps_in_batch option.

get_job_steps() is now deprecated, as it can’t fetch steps before they’re submitted.

3.1.3 Cluster Pooling

Cluster pooling can now join pooled clusters based on available CPU and memory reported by the YARN re-
source manager, rather than looking at number and type of instances in the cluster. You can enable this by set-
ting min_available_mb and/or min_available_virtual_cores. For this feature to work, you must enable SSH (the
ec2_key_pair and ec2_key_pair_file options).

133

https://github.com/Yelp/mrjob/blob/master/CHANGES.txt
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-docker.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html

mrjob Documentation, Release 0.7.4

You can now control the size of your cluster pool with the max_clusters_in_pool option. If a job wants to launch a
new cluster in the pool but the pool is already “full,” it will wait and try again until the pool is no longer full or it can
join a cluster.

Once a job determines that it is okay to add another cluster to the pool, it will wait a random number of seconds and try
again. This way, if several pooled jobs launch simultaneously, they will be likely to stay within the maximum number
of clusters rather than all launching their own. The random wait time can be controlled with pool_jitter_seconds.

By default, a job will wait forever to either join an existing cluster or create new one. You can make jobs give up and
raise an exception with the pool_timeout_minutes option.

mrjob will now bypass the pool_wait_minutes option if there is not a matching, active cluster to join. Basically, it
won’t wait if there is not a cluster to wait for. As with max_clusters_in_pool, if a job determines there are no clusters
to wait for, it will wait a random number of seconds and double-check before launching a new cluster.

3.1.4 Library requirements

To support concurrent steps, boto3 must be at least version 1.10.0 and botocore must be at least version 1.13.16.
The google-cloud-dataproc library must be no greater than 1.1.0, to maintain compatibility with our code.

3.2 0.7.3

Made many long-overdue changes to Cluster Pooling, to reduce the potential for throttling by the EMR API. Pooling
now puts most information a job needs to tell if it can join a cluster into the cluster name, meaning most non-matching
clusters can be filtered out when we call ListClusters. Pooling also no longer needs to list cluster steps. Finally,
if pool_wait_minutes is set, and there are multiple clusters we can join, we try them all, rather than just trying the
“best” one and then requesting more information from the API.

This update resulted in a few minor changes to pooling. When a job has the choice of multiple clusters, it chooses
solely on based on CPU capacity, using NormalizedInstanceHours in the cluster summary returned by the
ListClusters API call. mrjob version and applications must now match exactly in all cases.

We also re-worked the “locking” mechanism that keeps multiple jobs from joining the same cluster. Formerly, this
used S3 (which may only be eventually consistent), and locks had no fixed expiration time. Now, EMR tags are used
for locking, locks always expire after one minute, and every job uses the same timing when locking clusters, reducing
the potential for race conditions.

mrjob terminate-idle-clusters no longer attempts to lock clusters before terminating them, so its
--max-mins-locked option is deprecated and does nothing.

The Spark harness now emulates counters correctly in local mode.

If you use mapper_raw(), and your setup script has an error, it will be correctly reported, even if your underlying
shell is dash and not bash.

3.3 0.7.2

Spark normally only supports archives if you’re running on YARN. However, mrjob now seamlessly emulates archives
on all Spark masters (other than local). This means you can now use --archives or --dirs with mrjob
spark-submit, as well as using archives in your --setup script.

As a result of this change, mrjob is somewhat better at recognizing file extensions; it ignores . at the end of filenames,
and can now recognize that a file with a name like mrjob-0.7.0.tar.gz is a .tar.gz file, not a .7.0.tar.gz
file.

134 Chapter 3. What’s New

mrjob Documentation, Release 0.7.4

Also, if you don’t specify a name for an archive (e.g. --setup ’cd foo.tar.gz#/’) mrjob no longer includes
the file extension in the resulting directory name (foo/, not foo.tar.gz/).

Patched a long-standing security issue on EMR where we were copying the SSH key to the master node when reading
logs from other nodes, which are only accessible via the master node. mrjob now correctly uses ssh-add and the
SSH agent instead of copying the key. As a result, mrjob now has a ssh_add_bin option.

The extra_cluster_params option now recursively merges dict params into existing ones. For example, you can now
do this:

runners:
emr:
extra_cluster_params:

Instances:
EmrManagedMasterSecurityGroup: sg-foo

without obliterating the rest of the Instances API parameter.

Python 2 has reached end-of-life, so if you’re using Python 2, the default python_bin is python2.7 rather than
python, which now means Python 3 on some systems (for example, 6.x EMR AMIs).

Finally, we ensure that if you’re installing mrjob on Python 3.4, we’ll install a Python 3.4-compatible version of
PyYAML.

3.4 0.7.1

3.4.1 EMR

Fixed a bug to set default value of VisibleToAllUsers to True.

You can set sub-parameters with extra_cluster_params to set it False. For example, you can now do:

--extra-cluster-param VisibleToAllUsers=false

Added logging for mrjob to show invoked runner with keyword arguments. Contents of archives are now used during
bootstrapping to ensure clusters have same setup.

3.5 0.7.0

3.5.1 AWS and Google are now optional dependencies

Amazon Web Services (EMR/S3) and Google Cloud are now optional dependencies, aws and google respectively.
For example, to install mrjob with AWS support, run:

pip install mrjob[aws]

3.5.2 non-Python mrjobs are no longer supported

Fully removed support for writing MRJob scripts in other languages and then running them with the mrjob library.
(This capability so little used that chances are you never knew it existed.)

As a result the interpreter and steps_interpreter options are gone, the mrjob run subcommand is gone, and the
MRJobLauncher class has been merged back into MRJob. Also removed mr_wc.rb from mrjob/examples/

3.4. 0.7.1 135

mrjob Documentation, Release 0.7.4

3.5.3 MRSomeJob() means read from sys.argv

In prior versions, if you initialized a MRJob subclass with no arguments (MRSomeJob()), that meant the same
thing as passing in an empty argument list (MRSomeJob(args=[])). It now means to read args directly from
sys.argv[1:].

In practice, it’s rare to see MRJob subclass intialized this way outside of test cases. Running a MRJob script directly,
or initializing it with an argument list works this same as in previous versions.

3.5.4 mrjob/examples/ love

The mrjob.examples package has been updated. Some examples that were difficult to test or maintain were removed,
and the remainder were tested and fixed if necessary.

mrjob.examples.mr_text_classifier no longer needs you to encode documents in JSON format, and
instead operates directly on text files with names like doc_id-cat_id_1-not_cat_id_2-etc.txt. Try it
out:

python -m mrjob.examples.mr_text_classifier docs-to-classify/*.txt

3.5.5 miscellanous tweaks

The mrjob audit-emr-usage subcommand no longer attempts to read cluster pool names from clusters
launched by mrjob v0.5.x.

Method arguments in filesystem classes (in mrjob.fs) are now consistenly named. This probably won’t matter in
practice, as runner.fs <mrjob.runner.MRJobRunner.fs> is always a CompositeFilesystem any-
how.

3.5.6 removed deprecated code

Check your deprecation warnings! Everything marked deprecated in mrjob v0.6.x has been removed.

The following runner config options no longer exist: emr_api_params, interpreter, max_hours_idle,
mins_to_end_of_hour, steps_interpreter, steps_python_bin, visible_to_all_users.

The following singular switches have been removed in favor of their plural alternative (e.g. --archives):
--archive, --dir, --file, --hadoop-arg, --libjar, --py-file, --spark-arg.

The --steps switch is gone. This means --help --steps no longer works; use --help -v to see help for
--mapper, etc.

Support for simulating optparse has been removed from MRJob. This includes
add_file_option(), add_passthrough_option(), configure_options(), load_options(),
pass_through_option(), self.args, self.OPTION_CLASS.

mrjob.job.MRJobRunner.stream_output() and mrjob.job.MRJob.parse_output_line()
have been removed.

The constructor for MRJobRunner no longer has a file_upload_args keyword argument.

parse_and_save_options(), read_file(), and read_input() have all been removed from
mrjob.util.

CompositeFilesystem no longer takes filesystems as arguments to its constructor; use add_fs(). The useless
local_tmp_dir option to the GCSFilesystem constructor and the chunk_size arg to its put() method have been
removed.

136 Chapter 3. What’s New

https://github.com/Yelp/mrjob/tree/master/mrjob/examples
http://docs.python.org/2/library/optparse.html#module-optparse

mrjob Documentation, Release 0.7.4

3.6 0.6.12

Updated the Dataproc’s runner default image_version to 1.3, as the old default, 1.0 no longer works.

The local and inline runners can now handle file:// URIs as input paths and as files/archives uploaded to the
working directory. The local filesystem (available as runner.fs from all runners) can now handle file:// URIs
as well.

3.7 0.6.11

Adds support for parsing Spark logs and driver output to determine why a job failed. This works with with the local,
Hadoop, EMR, and Spark runners.

The Spark runner no longer needs pyspark in the $PYTHONPATH to launch scripts with spark-submit (it still
needs pyspark to use the Spark harness).

On Python 3.7, you can now intermix positional arguments to MRJob with switches, similar to how you could back
when mrjob used optparse. For example: mr_your_script.py file1 -v file2.

On EMR, the default image_version (AMI) is now 5.27.0.

Restored m4.large as the default instance type pre-5.13.0 AMIs, as they do not support m5.xlarge.
(m5.xlarge is still the default for AMI 5.13.0 and later.)

mrjob can now retry on transient AWS API errors (e.g. throttling) or network errors when making API calls that use
pagination (e.g. listing clusters).

The emr_configurations opt now supports the !clear tag rather than crashing. You may also override individual
configs by setting a config with the same Classification.

This version restores official support for Python 3.4, as it’s the version of Python 3 installed on EMR AMIs prior to
5.20.0. In order to make this work, mrjob drops support for Google Cloud services in Python 3.4, as the recent Google
libraries appear to need a later Python version.

3.8 0.6.10

Adds official support for PyPy (that is any version of it compatible with Python 2.7/3.5+). If you launch a job in PyPy
python_bin will automatically default to pypy or pypy3 as appropriate.

Note that mrjob does not auto-install PyPy for you on EMR (Amazon Linux does not provide a PyPy package).
Installing PyPy yourself at bootstrap time is fairly straightforward, see Installing PyPy.

The Spark harness can now be used on EMR, allowing you to run “classic” MRJobs in Spark, which is often faster.
Essentially, you launch jobs in the Spark runner with --spark-submit-bin ’mrjob spark-submit -r
emr’; see Running classic MRJobs on Spark on EMR for details.

The Spark runner can now optionally disable internal protocols when running “classic” MRJobs, eliminating the
(usually) unnecessary effort of encoding data structures into JSON or other string representations and then decoding
them. See skip_internal_protocol for details.

The EMR runner’s default instance type is now m5.xlarge, which works with newer reasons and should make it
easier to run Spark jobs. The EMR runner also now logs the DNS of the master node as soon as it is available, to make
it easier to SSH in.

Finally, mrjob gives a much clearer error message if you attempt to read a YAML mrjob.conf file without PyYAML
installed.

3.6. 0.6.12 137

http://docs.python.org/2/library/optparse.html#module-optparse

mrjob Documentation, Release 0.7.4

3.9 0.6.9

Drops support for Python 3.4.

Fixes a bug introduced in 0.6.8 that could break archives or directories uploaded into Hadoop or Spark if the name of
the unpacked archive didn’t have an archive extension (e.g. .tar.gz).

The Spark runner can now optionally emulate Hadoop’s mapreduce.map.input.file configuration property
when running the mapper of the first step of a streaming job if you enable emulate_map_input_file. This means that
jobs that depend on jobconf_from_env(’mapreduce.map.input.file’) will still work.

The Spark runner also now uses the correct argument names when emulating increment_counter(), and logs a
warning if spark_tmp_dir doesn’t match spark_master.

mrjob spark-submit can now pass switches to the Spark script/JAR without explicitly separating them out with --.

The local and inline runners now more correctly emulate the mapreduce.map.input.file config property by making it a
file:// URL.

Deprecated methods add_file_option() and add_passthrough_option() can now take a type (e.g.
int) as their type argument, to better emulate optparse.

3.10 0.6.8

3.10.1 Nearly full support for Spark

This release adds nearly full support for Spark, including mrjob-specific features like setup scripts and passthrough
options. See Why use mrjob with Spark? for everything mrjob can do with Spark.

This release adds a SparkMRJobRunner (-r spark), which works with any Spark installation, does not require
Hadoop, and can access any filesystem supported by both mrjob and Spark (HDFS, S3, GCS). The Spark runner is
now the default for mrjob spark-submit.

What’s not supported? mrjob does not yet support Spark on Google Cloud Dataproc. The Spark runner does not yet
parse logs to determine probable cause of failure when your job fails (though it does give you the Spark driver output).

3.10.2 Spark Hadoop Streaming emulation

Not only does the Spark runner not need Hadoop to run Spark jobs, it doesn’t need Hadoop to run most Hadoop
Streaming jobs, as it knows how to run them directly on Spark. This means if you want to migrate to a non-Hadoop
Spark cluster, you can take all your old MRJobs with you. See Running “classic” MRJobs on Spark for details.

The “experimental harness script” mentioned in 0.6.7 is now fully integrated into the Spark runner and is no longer
supported as a separate feature.

3.10.3 Local runner support for Spark

The local and inline runner can now run Spark scripts locally for testing, analogous to the way they’ve supported
Hadoop streaming scripts (except that they do require a local Spark installation). See Other ways to run on Spark.

138 Chapter 3. What’s New

http://docs.python.org/2/library/optparse.html#module-optparse

mrjob Documentation, Release 0.7.4

3.10.4 Other Spark improvements

MRJobs are now Spark-serializable without calling sandbox() (there used to be a problematic reference to
sys.stdin). This means you can always pass job methods to rdd.flatMap() etc.

setup scripts are no longer a YARN-specific feature, working on all Spark masters (except local[*], which doesn’t
give executors a separate working directory).

Likewise, you can now specify a different name for files in the job’s working directory (e.g. --file foo#bar) on
all Spark masters.

Note: Uploading archives and directories still only works on YARN for now; Spark considers --archives a
YARN-specific feature.

When running on a local Spark cluster, uses file://... rather than just the path of the file when necessary (e.g.
with --py-files).

cat_output() now ignores files and subdirectories starting with "." (used to only be "_"). This allows mrjob
to ignore Spark’s checksum files (e.g. .part-00000.crc), and also brings mrjob in closer compliance to the way
Hadoop input formats read directories.

spark.yarn.appMasterEnv.* config properties are only set if you’re actually running on YARN.

The values of spark_master and spark_deploy_mode can no longer be overridden with configuration properties (-D
spark.master=...). While not exactly a “feature,” this means that mrjob always knows what Spark platform it’s
running on.

3.10.5 Filesystems

Every runner has an fs attribute that gives access to all the filesystems that runner supports.

Added a put() method to all filesystems, which allows uploading a single file (it used to be that each runner had
custom logic for uploads).

It also used to be that if you wanted to create a bucket on S3 or GCS, you had to call create_bucket(...)
explicitly. Now mkdir() will automatically create buckets as needed.

If you still need to access methods specific to a filesystem, you should do so through fs.<name>, where
<name> is the (lowercase) name of the storage service. For example the Spark runner’s filesystem offers both
runner.fs.s3.create_bucket() and runner.fs.gcs.create_bucket(). The old style of implic-
itly passing through FS-specific methods (runner.fs.create_bucket(...)) is deprecated and going away in
v0.7.0.

GCSFilesystem‘s constructor had a useless local_tmp_dir argument, which is now deprecated and going
away in v0.7.0.

3.10.6 EMR

Fixed a bad bug introduced in 0.6.7 that could prevent mrjob from running on EMR with a non-default temp bucket.

You can now set sub-parameters with extra_cluster_params. For example, you can now do:

--extra-cluster-param Instances.EmrManagedMasterSecurityGroup=...

without clobbering the zone or instance group/fleet configs specified in Instances.

Running your job with --subnet ’’ now un-sets a subnet specified in your config file (used to be ignored).

3.10. 0.6.8 139

mrjob Documentation, Release 0.7.4

If you are using cluster pooling with retries (pool_wait_minutes), mrjob now retains information about clusters that is
immutable (e.g. AMI version), saving API calls.

3.10.7 Dependency upgrades

Bumped the required versions of several Google Cloud Python libraries to be more compatible with current versions
of their sub-dependencies (Google libraries pin a fairly narrow range of dependencies). mrjob now requires:

• google-cloud-dataproc at least 0.3.0,

• google-cloud-logging at least 1.9.0, and

• google-cloud-storage at least 1.13.1.

Also dropped support for PyYAML 3.08; now we require at least PyYAML 3.10 (which came out in 2011).

Note: We are aware that the Google libraries’ extensive dependencies can be a nuisance for mrjob users who
don’t use Google Cloud. Our tentative plan is to make dependencies specific to a third-party service (including
google-cloud-* and boto3) optional starting in v0.7.0.

3.10.8 Other bugfixes

Fixed a long-standing bug that would cause the Hadoop runner to hang or raise cryptic errors if hadoop_bin or
spark_submit_bin is not executable.

Support files for mrjob.examples (e.g. stop_words.txt for MRMostUsedWord) are now installed along
with mrjob.

Setting a *_bin option to an empty value (e.g. --hadoop-bin) now always instructs mrjob to use the default, rather
than disabling core features or creating cryptic errors. This affects gcloud_bin, hadoop_bin, sh_bin, and ssh_bin; the
various *python_bin options already worked this way.

3.11 0.6.7

setup commands now work on Spark (at least on YARN).

Added the mrjob spark-submit subcommand, which works as a drop-in replacement for spark-submit but with
mrjob runners (e.g EMR) and mrjob features (e.g. setup, cmdenv).

Fixed a bug that was causing idle timeout scripts to silently fail on 2.x EMR AMIs.

Fixed a bug that broke create_bucket() on us-east-1, preventing new mrjob installations from launching on
EMR in that region.

Fixed an ImportError from attempting to import os.SIGKILL on Windows.

The default instance type on EMR is now m4.large.

EMR’s cluster pooling now knows the CPU and memory capacity of c5 and m5 instances, allowing it to join “better”
clusters.

Added the plural form of several switches (separate multiple values with commas):

• --applications

• --archives

• --dirs

140 Chapter 3. What’s New

mrjob Documentation, Release 0.7.4

• --files

• --libjars

• --py-files

Except for --application, the singular version of these switches (--archive, --dir, --file, --libjar,
--py-file) is deprecated for consistency with Hadoop and Spark

sh_bin is now fully qualified by default (/bin/sh -ex, not sh -ex). sh_bin may no longer be empty, and a
warning is issued if it has more than one argument, to properly support shell script shebangs (e.g. #!/bin/sh -ex)
on Linux.

Runners no longer call MRJobs with --steps; instead the job passes its step description to the runner on instantia-
tion. --steps and steps_python_bin are now deprecated.

The Hadoop and EMR runner can now set SPARK_PYTHON and SPARK_DRIVER_PYTHON to different values if
need be (e.g. to match task_python_bin, or to support setup scripts in client mode).

The inline runner no longer attempts to run command substeps.

The inline and local runner no longer silently pretend to run non-streaming steps.

The Hadoop runner no longer has the bootstrap_spark option, which did nothing.

interpreter and steps_interpreter are deprecated, in anticipation in removing support for writing MRJobs in other
programming languages.

Runners now issue a warning if they receive options that belong to other runners (e.g. passing image_version to the
Hadoop runner).

mrjob create-cluster now supports --emr-action-on-failure.

Updated deprecate escape sequences in mrjob code that would break on Python 3.8.

--help message for mrjob subcommands now correctly includes the subcommand in usage.

mrjob no longer raises AssertionError, instead raising ValueError.

Added an experimental harness script (in mrjob/spark) to run basic MRJobs on Spark, potentially without Hadoop:

spark-submit mrjob_spark_harness.py module.of.YourMRJob input_path output_dir

Added map_pairs(), reduce_pairs(), and combine_pairs() methods to MRJob, to enable the Spark
harness script.

3.12 0.6.6

Fixes a longstanding bug where boolean jobconf values were passed to Hadoop in Python format (True instead of
true). You can now do safely do something like this:

runners:
emr:
jobconf:
mapreduce.output.fileoutputformat.compress: true

whereas in prior versions of mrjob, you had to use "true" in quotes.

Added -D as a synonym for --jobconf, to match Hadoop.

On EMR, if you have SSH set up (see Configuring SSH credentials) mrjob can fetch your history log directly from
HDFS, allowing it to more quickly diagnose why your job failed.

3.12. 0.6.6 141

mrjob Documentation, Release 0.7.4

Added a --local-tmp-dir switch. If you set local_tmp_dir to empty string, mrjob will use the system default.

You can now pass multiple arguments to Hadoop --hadoop-args (for example, --hadoop-args=’-fs
hdfs://namenode:port’), rather than having to use --hadoop-arg one argument at time. --hadoop-arg
is now deprecated.

Similarly, you can use --spark-args to pass arguments to spark-submit in place of the now-deprecated
--spark-arg.

mrjob no longer automatically passes generic arguments (-D and -libjars) to JarSteps, because this confuses
some JARs. If you want mrjob to pass generic arguments to a JAR, add GENERIC_ARGS to your JarStep‘s args
keyword argument, like you would with INPUT and OUTPUT.

The Hadoop runner now has a spark_deploy_mode option.

Fixed the usage: usage: typo in --help messages.

mrjob.job.MRJob.add_file_arg() can now take an explicit type=str (used to cause an error).

The deprecated optparse emulation methods add_file_option() and add_passthrough_option()
now support type=’str’ (used to only accept type=’string’).

Fixed a permissions error that was breaking inline and local mode on some versions of Windows.

3.13 0.6.5

This release fixes an issue with self-termination of idle clusters on EMR (see max_mins_idle) where the mas-
ter node sometimes simply ignored sudo shutdown -h now. The idle self termination script now logs to
bootstrap-actions/mrjob-idle-termination.log.

Note: If you are using Cluster Pooling, it’s highly recommended you upgrade to this version to fix the self-termination
issue.

You can now turn off log parsing (on all runners) by setting read_logs to false. This can speed up cases where you
don’t care why a job failed (e.g. integration tests) or where you’d rather use the diagnose tool after the fact.

You may specify custom AMIs with the image_id option. To find Amazon Linux AMIs compatible with EMR that
you can use as a base for your custom image, use describe_base_emr_images().

The default AMI on EMR is now 5.16.0.

New EMR clusters launched by mrjob will be automatically tagged with __mrjob_label (filename of your mrjob
script) and __mrjob_owner (your username), to make it easier to understand your mrjob usage in CloudWatch etc.
You can change the value of these tags with the label and owner options.

You may now set the root EBS volume size for EMR clusters directly with ebs_root_volume_gb (you used to have to
use instance_groups or instance_fleets).

API clients returned by EMRJobRunner now retry on SSL timeouts. EMR clients returned by
mrjob.emr.EMRJobRunner.make_emr_client() won’t retry faster than check_cluster_every, to prevent
throttling.

Cluster pooling recovery (relaunching a job when your pooled cluster self-terminates) now works correctly on single-
node clusters.

3.14 0.6.4

This release makes it easy to attach static files to your MRJob with the FILES, DIRS, and ARCHIVES attributes.

142 Chapter 3. What’s New

https://aws.amazon.com/cloudwatch/

mrjob Documentation, Release 0.7.4

In most cases, you no longer need setup scripts to access other python modules or packages from your job because
you can use DIRS instead. For more details, see Using other python modules and packages.

For completeness, also added files(), dirs(), and archives() methods.

terminate-idle-clusters now skips termination-protected idle clusters, rather than crashing (this is fixed in 0.5.12, but
not previous 0.6.x versions).

Python 3.3 is no longer supported.

mrjob now requires google-cloud-dataproc 0.2.0+ (this library used to be vendored).

3.15 0.6.3

3.15.1 Read arbitrary file formats

You can now pass entire files in any format to your mapper by defining mapper_raw(). See Passing entire files to
the mapper for an example.

3.15.2 Google Cloud Datatproc parity

mrjob now offers feature parity between Google Cloud Dataproc and Amazon Elastic MapReduce. Support for Spark
and libjars will be added in a future release. (There is no plan to introduce Cluster Pooling with Dataproc.)

Specifically, DataprocJobRunner now supports:

• fetching and parsing counters

• parsing logs for probable cause of failure

• job progress messages (% complete)

• Jar steps

• these config options:

– cloud_part_size_mb (chunked uploading)

– core_instance_config, master_instance_config, task_instance_config

– hadoop_streaming_jar

– network/subnet (running in a VPC)

– service_account (custom IAM account)

– service_account_scopes (fine-grained permissions)

– ssh_tunnel/ssh_tunnel_is_open (resource manager)

Improvements to existing Dataproc features:

• bootstrap scripts run in a temp dir, rather than /

• uses Dataproc’s built-in auto-termination feature, rather than a script

• GCS filesystem:

– cat() streams data rather than dumping to a temp file

– exists() no longer swallows all exceptions

To get started, read Getting started with Google Cloud.

3.15. 0.6.3 143

mrjob Documentation, Release 0.7.4

3.15.3 Other changes

mrjob no longer streams your job output to the command line if you specify output_dir. You can control this with the
--cat-output and --no-cat-output switches (--no-output is deprecated).

cloud_upload_part_size has been renamed to cloud_part_size_mb (the old name will work until v0.7.0).

mrjob can now recognize “not a valid JAR” errors from Hadoop and suggest them as probable cause of job failure.

mrjob no longer depends on google-cloud (which implies several other Google libraries). Its current Google
library dependencies are google-cloud-logging 1.5.0+ and google-cloud-storage 1.9.0+. Future ver-
sions of mrjob will depend on google-cloud-dataproc 0.11.0+ (currently included with mrjob because it hasn’t
yet been released).

RetryWrapper now sets __name__ when wrapping methods, making for easier debugging.

3.16 0.6.2

mrjob is now orders of magnitude quicker at parsing logs, making it practical to diagnose rare errors from very large
jobs. However, on some AMIs, it can no longer parse errors without waiting for logs to transfer to S3 (this may be
fixed in a future version).

To run jobs on Google Cloud Dataproc, mrjob no longer requires you to install the gcloud util (though if you do
have it installed, mrjob can read credentials from its configs). For details, see Dataproc Quickstart.

mrjob no longer requires you to select a Dataproc zone prior to running jobs. Auto zone placement (just set region and
let Dataproc pick a zone) is now enabled, with the default being auto zone placement in us-west1. mrjob no longer
reads zone and region from gcloud‘s compute engine configs.

mrjob’s Dataproc code has been ported from the google-python-api-client library (which is in maintenance
mode) to google-cloud-sdk, resulting in some small changes to the GCS filesystem API. See CHANGES.txt for
details.

Local mode now has a num_cores option that allow you to control how tasks it handles simultaneously.

3.17 0.6.1

Added the diagnose tool (run mrjob diagnose j-CLUSTERID), which determines why a previously run job
failed.

Fixed a serious bug that made mrjob unable to properly parse error logs in some cases.

Added the get_job_steps() method to EMRJobRunner.

3.18 0.6.0

3.18.1 Dropped Python 2.6

mrjob now supports Python 2.7 and Python 3.3+. (Some versions of PyPy also work but are not officially supported.)

144 Chapter 3. What’s New

https://github.com/Yelp/mrjob/blob/master/CHANGES.txt

mrjob Documentation, Release 0.7.4

3.18.2 boto3, not boto

mrjob now uses boto3 rather than boto to talk to AWS. This makes it much simpler to pass user-defined data
structures directly to the API, enabling a number of features.

At least version 1.4.6 of boto3 is required to run jobs on EMR.

It is now possible to fully configure instances (including EBS volumes). See instance_groups for an example.

mrjob also now supports Instance Fleets, which may be fully configured (including EBS volumes) through the in-
stance_fleets option.

Methods that took or returned boto objects (for example, make_emr_conn()) have been completely removed as
there as no way to make a deprecated shim for them without keeping boto as a dependency. See EMRJobRunner
and S3Filesystem for new method names.

Note that boto3 reads temporary credentials from $AWS_SESSION_TOKEN, not $AWS_SECURITY_TOKEN as in
boto (see aws_session_token for details).

3.18.3 argparse, not optparse

mrjob now uses argparse to parse options, rather than optparse, which has been deprecated since Python 2.7.

argparse has slightly different option-parsing logic. A couple of things you should be aware of:

• everything that starts with - is assumed to be a switch. --hadoop-arg=-verbose works, but
--hadoop-arg -verbose does not.

• positional arguments may not be split. mr_wc.py CHANGES.txt LICENSE.txt -r local will work,
but mr_wc.py CHANGES.txt -r local LICENSE.txt will not.

Passthrough options, file options, etc. are now handled with add_file_arg(), add_passthru_arg(),
configure_args(), load_args(), and pass_arg_through(). The old methods with “option” in their
name are deprecated but still work.

As part of this refactor, OptionStore and its subclasses have been removed; options are now handled by runners directly.

3.18.4 Chunks, not lines

mrjob no longer assumes that job output will be line-based. If you run your job programmatically, you should read
your job output with cat_output(), which yields bytestrings which don’t necessarily correspond to lines, and run
these through parse_output(), which will convert them into key/value pairs.

runner.fs.cat() also now yields arbitrary bytestrings, not lines. When it yields from multiple files, it will yield
an empty bytestring (b’’) between the chunks from each file.

read_file() and read_input() are now deprecated because they are line-based. Try decompress(),
to_chunks(), and to_lines().

3.18.5 Better local/inline mode

The sim runners (inline and local mode) have been completely rewritten, making it possible to fix a number of
outstanding issues.

Local mode now runs one mapper/reducer per CPU, using multiprocesssing, for faster results.

We only sort by reducer key (not the full line) unless SORT_VALUES is set, exposing bad assumptions sooner.

The step_output_dir option is now supported, making it easier to debug issues in intermediate steps.

3.18. 0.6.0 145

http://docs.python.org/2/library/argparse.html#module-argparse
http://docs.python.org/2/library/optparse.html#module-optparse
http://docs.python.org/2/library/argparse.html#module-argparse

mrjob Documentation, Release 0.7.4

Files in tasks’ (e.g. mappers’) working directories are marked user-executable, to better imitate Hadoop Distributed
Cache. When possible, we also symlink to a copy of each file/archive in the “cache,” rather than copying them.

If os.symlink() raises an exception, we fall back to copying (this can be an issue in Python 3 on Windows).

Tasks are run more like they are in Hadoop; input is passed through stdin, rather than as script arguments. mrjob.cat
is no longer executable because local mode no longer needs it.

3.18.6 Cloud runner improvements

Much of the common code for the “cloud” runners (Dataproc and EMR) has been merged, so that new features can be
rolled out in parallel.

The bootstrap option (for both Dataproc and EMR) can now take archives and directories as well as files, like the setup
option has since version 0.5.8.

The extra_cluster_params option allows you to pass arbitrary JSON to the API at cluster create time (in Dataproc and
EMR). The old emr_api_params option is deprecated and disabled.

max_hours_idle has been replaced with max_mins_idle (the old option is deprecated but still works). The default is
10 minutes. Due to a bug, smaller numbers of minutes might cause the cluster to terminate before the job runs.

It is no longer possible for mrjob to launch a cluster that sits idle indefinitely (except by setting max_mins_idle to an
unreasonably high value). It is still a good idea to run report-long-jobs because mrjob can’t tell if a running job is
doing useful work or has stalled.

3.18.7 EMR now bills by the second, not the hour

Elastic MapReduce recently stopped billing by the full hour, and now bills by the second. This means that Cluster
Pooling is no longer a cost-saving strategy, though developers might find it handy to reduce wait times when testing.

The mins_to_end_of_hour option no longer makes sense, and has been deprecated and disabled.

audit-emr-usage has been updated to use billing by the second when approximating time billed and waste.

Note: Pooling was enabled by default for some development versions of v0.6.0, prior to the billing change. This did
not make it into the release; you must still explicitly turn on cluster pooling.

3.18.8 Other EMR changes

The default AMI is now 5.8.0. Note that this means you get Spark 2 by default.

Regions are now case-sensitive, and the EU alias for eu-west-1 no longer works.

Pooling no longer adds dummy arguments to the master bootstrap script, instead setting the __mrjob_pool_hash
and __mrjob_pool_name tags on the cluster.

mrjob automatically adds the __mrjob_version tag to clusters it creates.

Jobs will not add tags to clusters they join rather than create.

enable_emr_debugging now works on AMI 4.x and later.

AMI 2.4.2 and earlier are no longer supported (no Python 2.7). There is no longer any special logic for the “latest”
AMI alias (which the API no longer supports).

The SSH filesystem no longer dumps file contents to memory.

146 Chapter 3. What’s New

http://docs.python.org/2/library/os.html#os.symlink

mrjob Documentation, Release 0.7.4

Pooling will only join a cluster with enough running instances to meet its specifications; requested instances no longer
count.

Pooling is now aware of EBS (disk) setup.

Pooling won’t join a cluster that has extra instance types that don’t have enough memory or disk space to run your job.

Errors in bootstrapping scripts are no longer dumped as JSON.

visible_to_all_users is deprecated.

3.18.9 Massive purge of deprecated code

About a hundred functions, methods, options, and more that were deprecated in v0.5.x have been removed. See
CHANGES.txt for details.

3.19 0.5.12

This release came out after v0.6.3. It was mostly a backport from v0.6.x.

Python 2.6 and 3.3 are no longer supported.

mrjob.parse.parse_s3_uri() handles s3a:// URIs.

terminate-idle-clusters now skips termination-protected idle clusters, rather than crashing.

Since Amazon no longer bills by the full hour, the mins_to_end_of_hour option now defaults to 60, effectively dis-
abling it.

When mrjob passes an environment dictionary to subprocesses, it ensures that the keys and values are always strs
(this mostly affects Python 2 on Windows).

3.20 0.5.11

The report-long-jobs utility can now ignore certain clusters based on EMR tags.

This version deals more gracefully with clusters that use instance fleets, preventing crashes that may occur in some
rare edge cases.

3.21 0.5.10

Fixed an issue where bootstrapping mrjob on Dataproc or EMR could stall if mrjob was already installed.

The aws_security_token option has been renamed to aws_session_token. If you want to set it via environment variable,
you still have to use $AWS_SECURITY_TOKEN because that’s what boto uses.

Added protocol support for rapidjson; see RapidJSONProtocol and RapidJSONValueProtocol. If
available, rapidjson will be used as the default JSON implementation if ujson is not installed.

The master bootstrap script on EMR and Dataproc now has the correct file extension (.sh, not .py).

3.19. 0.5.12 147

https://github.com/Yelp/mrjob/blob/master/CHANGES.txt
https://aws.amazon.com/about-aws/whats-new/2017/10/amazon-emr-now-supports-per-second-billing/
http://docs.python.org/2/library/functions.html#str

mrjob Documentation, Release 0.7.4

3.22 0.5.9

Fixed a bug that prevented setup scripts from working on EMR AMIs 5.2.0 and later. Our workaround should be
completely transparent unless you use a custom shell binary; see sh_bin for details.

The EMR runner now correctly re-starts the SSH tunnel to the job tracker/resource manager when a cluster it tries to
run a job on auto-terminates. It also no longer requires a working SSH tunnel to fetch job progress (you still a working
SSH; see ec2_key_pair_file).

The emr_applications option has been renamed to applications.

The terminate-idle-clusters utility is now slightly more robust in cases where your S3 temp directory is an different
region from your clusters.

Finally, there a couple of changes that probably only matter if you’re trying to wrap your Hadoop tasks (mappers,
reducers, etc.) in docker:

• You can set just the python binary for tasks with task_python_bin. This allows you to use a wrapper script in
place of Python without perturbing setup scripts.

• Local mode now no longer relies on an absolute path to access the mrjob.cat utility it uses to handle com-
pressed input files; copying the job’s working directory into Docker is enough.

3.23 0.5.8

You can now pass directories to jobs, either directly with the upload_dirs option, or through setup commands. For
example:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code/#'

mrjob will automatically tarball these directories and pass them to Hadoop as archives.

For multi-step jobs, you can now specify where inter-step output goes with step_output_dir
(--step-output-dir), which can be useful for debugging.

All job step types now take the jobconf keyword argument to set Hadoop properties for that step.

Jobs’ --help printout is now better-organized and less verbose.

Made several fixes to pre-filters (commands that pipe into streaming steps):

• you can once again add pre-filters to a single step job by re-defining mapper_pre_filter(),
combiner_pre_filter(), and/or reducer_pre_filter()

• local mode now ignores non-zero return codes from pre-filters (this matters for BSD grep)

• local mode can now run pre-filters on compressed input files

mrjob now respects sh_bin when it needs to wrap a command in sh before passing it to Hadoop (e.g. to support pipes)

On EMR, mrjob now fetches logs from task nodes when determining probable cause of error, not just core nodes (the
ones that run tasks and host HDFS).

Several unused functions in mrjob.util are now deprecated:

• args_for_opt_dest_subset()

• bash_wrap()

• populate_option_groups_with_options()

• scrape_options_and_index_by_dest()

148 Chapter 3. What’s New

mrjob Documentation, Release 0.7.4

• tar_and_gzip()

bunzip2_stream() and gunzip_stream() have been moved from mrjob.util to mrjob.cat.

SSHFilesystem.ssh_slave_hosts() has been deprecated.

Option group attributes in MRJobs have been deprecated, as has the get_all_option_groups() method.

3.24 0.5.7

3.24.1 Spark and related changes

mrjob now supports running Spark jobs on your own Hadoop cluster or Elastic MapReduce. mrjob provides significant
benefits over Spark’s built-in Python support; see Why use mrjob with Spark? for details.

Added the py_files option, to put .zip or .egg files in your job’s PYTHONPATH. This is based on a Spark feature, but it
works with streaming jobs as well. mrjob is now bootstrapped (see bootstrap_mrjob) as a .zip file rather than a tarball.
If for some reason, the bootstrapped mrjob library won’t compile, you’ll get much cleaner error messages.

The default AMI version on EMR (see image_version) has been bumped from 3.11.0 to 4.8.2, as 3.11.0’s Spark support
is spotty.

On EMR, mrjob now defaults to the cheapest instance type that will work (see instance_type). In most cases, this is
m1.medium, but it needs to be m1.large for Spark worker nodes.

3.24.2 Cluster pooling

mrjob can now add up to 1,000 steps on pooled clusters on EMR (except on very old AMIs). mrjob now prints debug
messages explaining why your job matched a particular pooled cluster when running in verbose mode (the -v option).
Fixed a bug that caused pooling to fail when there was no need for a master bootstrap script (e.g. when running with
--no-bootstrap-mrjob).

3.24.3 Other improvements

Log interpretation is much more efficient at determining a job’s probable cause of failure (this works with Spark as
well).

When running custom JARs (see JarStep) mrjob now repects libjars and jobconf.

The hadoop_streaming_jar option now supports environment variables and ~.

The terminate-idle-clusters tool now works with all step types, including Spark. (It’s still recommended that you rely
on the max_hours_idle option rather than this tool.)

mrjob now works in Anaconda3 Jupyter Notebook.

3.24.4 Bugfixes

Added several missing command-line switches, including --no-bootstrap-python on Dataproc. Made a major
refactor that should prevent these kinds of issues in the future.

Fixed a bug that caused mrjob to crash when the ssh binary (see ssh_bin) was missing or not executable.

Fixed a bug that erroneously reported failed or just-started jobs as 100% complete.

3.24. 0.5.7 149

mrjob Documentation, Release 0.7.4

Fixed a bug where timestamps were erroneously recognized as URIs. mrjob now only recognizes strings containing
:// as URIs (see is_uri()).

3.24.5 Deprecation

The following are deprecated and will be removed in v0.6.0:

• JarStep.‘‘INPUT‘‘; use mrjob.step.INPUT instead

• JarStep.‘‘OUTPUT‘‘; use mrjob.step.OUTPUT instead

• non-strict protocols (see strict_protocols)

• the python_archives option (try this instead)

• is_windows_path()

• parse_key_value_list()

• parse_port_range_list()

• scrape_options_into_new_groups()

3.25 0.5.6

Fixed a critical bug that caused Dataproc runner to always crash when determining Hadoop version.

Log interpretation now prioritizes task errors (e.g. a traceback from your Python script) as probable cause of failure,
even if they aren’t the most recent error. Log interpretation will now continue to download and parse task logs until it
finds a non-empty stderr log.

Log interpretation also strips the “subprocess failed” Java stack trace that appears in task stderr logs from Hadoop 1.

3.26 0.5.5

Functionally equivalent to 0.5.4, except that it restores the deprecated ami_version option as an alias for image_version,
making it easier to upgrade from earlier versions of mrjob.

Also slightly improves Cluster Pooling on EMR with updated information on memory and CPU power of various EC2
instance types, and by treating application names (e.g. “Spark”) as case-insensitive.

3.27 0.5.4

3.27.1 Pooling and idle cluster self-termination

Warning: This release accidentally removed the ami_version option instead of merely deprecating it. If you are
upgrading from an earlier version of mrjob, use version 0.5.5 or later.

This release resolves a long-standing EMR API race condition that made it difficult to use Cluster Pooling and idle
cluster self-termination (see max_hours_idle) together. Now if your pooled job unknowingly runs on a cluster that was
in the process of shutting down, it will detect that and re-launch the job on a different cluster.

This means pretty much everyone running jobs on EMR should now enable pooling, with a configuration like this:

150 Chapter 3. What’s New

mrjob Documentation, Release 0.7.4

runners:
emr:
max_hours_idle: 1
pool_clusters: true

You may also run the terminate-idle-clusters script periodically, but (barring any bugs) this shouldn’t be necessary.

3.27.2 Generic EMR option names

Many options to the EMR runner have been made more generic, to make it easier to share code with the Dataproc
runner (in most cases, the new names are also shorter and easier to remember):

old option name new option name
ami_version image_version
aws_availablity_zone zone
aws_region region
check_emr_status_every check_cluster_every
ec2_core_instance_bid_price core_instance_bid_price
ec2_core_instance_type core_instance_type
ec2_instance_type instance_type
ec2_master_instance_bid_price master_instance_bid_price
ec2_master_instance_type master_instance_type
ec2_slave_instance_type core_instance_type
ec2_task_instance_bid_price task_instance_bid_price
ec2_task_instance_type task_instance_type
emr_tags tags
num_ec2_core_instances num_core_instances
num_ec2_task_instances num_task_instances
s3_log_uri cloud_log_dir
s3_sync_wait_time cloud_fs_sync_secs
s3_tmp_dir cloud_tmp_dir
s3_upload_part_size cloud_upload_part_size

The old option names and command-line switches are now deprecated but will continue to work until v0.6.0. (Excep-
tion: ami_version was accidentally removed; if you need it, use 0.5.5 or later.)

num_ec2_instances has simply been deprecated (it’s just num_core_instances plus one).

hadoop_streaming_jar_on_emr has also been deprecated; in its place, you can now pass a file:// URI to
hadoop_streaming_jar to reference a path on the master node.

3.27.3 Log interpretation

Log interpretation (counters and probable cause of job failure) on Hadoop is more robust, handing a wider variety of
log4j formats and recovering more gracefully from permissions errors. This includes fixing a crash that could happen
on Python 3 when attempting to read data from HDFS.

Log interpretation used to be partially broken on EMR AMI 4.3.0 and later due to a permissions issue; this is now
fixed.

3.27.4 pass_through_option()

You can now pass through existing command-line switches to your job; for example, you can tell a job which runner
launched it. See pass_through_option() for details.

3.27. 0.5.4 151

mrjob Documentation, Release 0.7.4

If you don’t do this, self.options.runner will now always be None in your job (it used to confusingly default
to ’inline’).

3.27.5 Stop logging credentials

When mrjob is run in verbose mode (the -v option), the values of all runner options are debug-logged to stderr. This
has been the case since the very early days of mrjob.

Unfortunately, this means that if you set your AWS credentials in mrjob.conf, they get logged as well, creat-
ing a surprising potential security vulnerability. (This doesn’t happen for AWS credentials set through environment
variables.)

Starting in this version, the values of aws_secret_access_key and aws_security_token are shown as ’...’ if they are
set, and all but the last four characters of aws_access_key_id are blanked out as well (e.g. ’...YNDR’).

3.27.6 Other improvements and bugfixes

The ssh tunnel to the resource manager on EMR (see ssh_tunnel) now connects to its correct internal IP; this resolves
a firewall issue that existed on some VPC setups.

Uploaded files will no longer be given names starting with _ or ., since Hadoop’s input processing treats these files
as “hidden”.

The EMR idle cluster self-termination script (see max_hours_idle) now only runs on the master node.

The audit-emr-usage command-line tool should no longer constantly trigger throttling warnings.

bootstrap_python no longer bothers trying to install Python 3 on EMR AMI 4.6.0 and later, since it is already installed.

The --ssh-bind-ports command-line switch was broken (starting in 0.4.5!), and is now fixed.

3.28 0.5.3

This release adds support for custom libjars (such as nicknack), allowing easy access to custom input and output
formats. This works on Hadoop and EMR (including on a cluster that’s already running).

In addition, jobs can specify needed libjars by setting the LIBJARS attribute or overriding the libjars() method.
For examples, see Input and output formats.

The Hadoop runner now tries even harder to find your log files without needing additional configuration (see
hadoop_log_dirs).

The EMR runner now supports Amazon VPC subnets (see subnet), and, on 4.x AMIs, Application Configurations (see
emr_configurations).

If your EMR cluster fails during bootstrapping, mrjob can now determine the probable cause of failure.

There are also some minor improvements to SSH tunneling and a handful of small bugfixes; see CHANGES.txt for
details.

3.29 0.5.2

This release adds basic support for Google Cloud Dataproc which is Google’s Hadoop service, roughly analogous to
EMR. See Dataproc Quickstart. Some features are not yet implemented:

152 Chapter 3. What’s New

http://empiricalresults.github.io/nicknack/
https://github.com/Yelp/mrjob/blob/master/CHANGES.txt
https://cloud.google.com/dataproc/overview

mrjob Documentation, Release 0.7.4

• fetching counters

• finding probable cause of errors

• running Java JARs as steps

Added the emr_applications option, which helps you configure 4.x AMIs.

Fixed an EMR bug (introduced in v0.5.0) where we were waiting for steps to complete in the wrong order (in a
multi-step job, we wouldn’t register that the first step had finished until the last one had).

Fixed a bug in SSH tunneling (introduced in v0.5.0) that made connections to the job tracker/resource manager on
EMR time out when running on a 2.x AMI inside a VPC (Virtual Private Cluster).

Fixed a bug (introduced in v0.4.6) that kept mrjob from interpreting ~ (home directory) in includes in mrjob.conf.

It is now again possible to run tool modules deprecated in v0.5.0 directly (e.g. python -m
mrjob.tools.emr.create_job_flow). This is still a deprecated feature; it’s recommended that you use the
appropriate mrjob subcommand instead (e.g. mrjob create-cluster).

3.30 0.5.1

Fixes a bug in the previous relase that broke SORT_VALUES and any other attempt by the job to set the partitioner.
The --partitioner switch is now deprecated (the choice of partitioner is part of your job semantics).

Fixes a bug in the previous release that caused strict_protocols and check_input_paths to be ignored in mrjob.conf.
(We would much prefer you fixed jobs that are using “loose protocols” rather than setting strict_protocols:
false in your config file, but we didn’t break this on purpose, we promise!)

mrjob terminate-idle-clusters now correctly handles EMR debugging steps (see enable_emr_debugging)
set up by boto 2.40.0.

Fixed a bug that could result in showing a blank probable cause of error for pre-YARN (Hadoop 1) jobs.

ssh_bind_ports now defaults to a range object (xrange on Python 2), so that when you run on emr in verbose mode
(-r emr -v), debug logging devotes one line to the value of ssh_bind_ports rather than 840.

3.31 0.5.0

3.31.1 Python versions

mrjob now fully supports Python 3.3+ in a way that should be transparent to existing Python 2 users (you don’t have
to suddenly start handling unicode instead of str). For more information, see Python 2 vs. Python 3.

If you run a job with Python 3, mrjob will automatically install Python 3 on ElasticMapreduce AMIs (see boot-
strap_python).

When you run jobs on EMR in Python 2, mrjob attempts to match your minor version of Python as well (either
python2.6 or python2.7); see python_bin for details.

Note: If you’re currently running Python 2.7, and using yum to install python libraries, you’ll want to use the Python
2.7 version of the package (e.g. python27-numpy rather than python-numpy).

The mrjob command is now installed with Python-version-specific aliases (e.g. mrjob-3, mrjob-3.4), in case
you install mrjob for multiple versions of Python.

3.30. 0.5.1 153

mrjob Documentation, Release 0.7.4

3.31.2 Hadoop

mrjob should now work out-of-the box on almost any Hadoop setup. If hadoop is in your path, or you set any
commonly-used $HADOOP_* environment variable, mrjob will find the Hadoop binary, the streaming jar, and your
logs, without any help on your part (see hadoop_bin, hadoop_log_dirs, hadoop_streaming_jar).

mrjob has been updated to fully support Hadoop 2 (YARN), including many updates to HadoopFilesystem.
Hadoop 1 is still supported, though anything prior to Hadoop 0.20.203 is not (mrjob is actually a few months older
than Hadoop 0.20.203, so this used to matter).

3.31.3 3.x and 4.x AMIs

mrjob now fully supports the 3.x and 4.x Elastic MapReduce AMIs, including SSH tunneling to the resource manan-
ager, fetching counters and finding probable cause of job failure.

The default ami_version (see image_version) is now 3.11.0. Our plan is to continue updating this to the lastest
(non-broken) 3.x AMI for each 0.5.x release of mrjob.

The default instance_type is now m1.medium (m1.small is too small for the 3.x and 4.x AMIs)

You can specify 4.x AMIs with either the new release_label option, or continue using ami_version; both work.

mrjob continues to support 2.x AMIs. However:

Warning: 2.x AMIs are deprecated by AWS, and based on a very old version of Debian (squeeze), which breaks
apt-get and exposes you to security holes.

Please, please switch if you haven’t already.

3.31.4 AWS Regions

The new default aws_region (see region) is us-west-2 (Oregon). This both matches the default in the EMR console
and, according to Amazon, is carbon neutral.

An edge case that might affect you: EC2 key pairs (i.e. SSH credentials) are region-specific, so if you’ve set up SSH
but not explicitly specified a region, you may get an error saying your key pair is invalid. The fix is simply to create
new SSH keys for the us-west-2 (Oregon) region.

3.31.5 S3

mrjob is much smarter about the way it interacts with S3:

• automatically creates temp bucket in the same region as jobs

• connects to S3 buckets on the endpoint matching their region (no more 307 errors)

– EMRJobRunner and S3Filesystem methods no longer take s3_conn args (passing around a
single S3 connection no longer makes sense)

• no longer uses the temp bucket’s location to choose where you run your job

• rm() no longer has special logic for *_$folder$ keys

• ls() recurses “subdirectories” even if you pass it a URI without a trailing slash

154 Chapter 3. What’s New

https://aws.amazon.com/about-aws/sustainability/

mrjob Documentation, Release 0.7.4

3.31.6 Log interpretation

The part of mrjob that fetches counters and tells you what probably caused your job to fail was basically unmaintainable
and has been totally rewritten. Not only do we now have solid support across Hadoop and EMR AMI versions, but if
we missed anything, it should be straightforward to add it.

Once casualty of this change was the mrjob fetch-logs command, which means mrjob no longer offers a way
to fetch or interpret logs from a past job. We do plan to re-introduce this functionality.

3.31.7 Protocols

Protocols are now strict by default (they simply raise an exception on unencodable data). “Loose” protocols can be
re-enabled with the --no-strict-protocols switch; see strict_protocols for why this is a bad idea.

Protocols will now use the much faster ujson library, if installed, to encode and decode JSON. This is especially
recommended for simple jobs that spend a significant fraction of their time encoding and data.

Note: If you’re using EMR, try out this bootstrap recipe to install ujson.

mrjob will fall back to the simplejson library if ujson is not installed, and use the built-in jsonmodule if neither
is installed.

You can now explicitly specify which JSON implementation you wish to use (e.g. StandardJSONProtocol,
SimpleJSONProtocol, UltraJSONProtocol).

3.31.8 Status messages

We’ve tried to cut the logging messages that your job prints as it runs down to the basics (either useful info, like where
a temp directory is, or something that tells you why you’re waiting). If there are any messages you miss, try running
your job with -v.

When a step in your job fails, mrjob no longer prints a useless stacktrace telling you where in the code the runner
raised an exception about your step failing. This is thanks to StepFailedException, which you can also catch
and interpret if you’re running jobs programmatically.

3.31.9 Deprecation

Many things that were deprecated in 0.4.6 have been removed:

• options:

– IF_SUCCESSFUL cleanup option (use ALL)

– iam_job_flow_role (use iam_instance_profile)

• functions and methods:

– positional arguments to mrjob.job.MRJob.mr() (don’t even use mr(); use
mrjob.step.MRStep)

– mrjob.job.MRJob.jar() (use mrjob.step.JarStep)

– step_args and name arguments to mrjob.step.JarStep (use args instead of step_args, and don’t use
name at all)

– mrjob.step.MRJobStep (use mrjob.step.MRStep)

– mrjob.compat.get_jobconf_value() (use to jobconf_from_env())

3.31. 0.5.0 155

mrjob Documentation, Release 0.7.4

– mrjob.job.MRJob.parse_counters()

– mrjob.job.MRJob.parse_output()

– mrjob.conf.combine_cmd_lists()

– mrjob.fs.s3.S3Filesystem.get_s3_folder_keys()

mrjob.compat functions supports_combiners_in_hadoop_streaming(),
supports_new_distributed_cache_options(), and uses_generic_jobconf(), which only
existed to support very old versions of Hadoop, were removed without deprecation warnings (sorry!).

To avoid a similar wave of deprecation warnings in the future, the name of every part of mrjob that isn’t meant to be
a stable interface provided by the library now starts with an underscore. You can still use these things (or copy them;
it’s Open Source), but there’s no guarantee they’ll exist in the next release.

If you want to get ahead of the game, here is a list of things that are deprecated starting in mrjob 0.5.0 (do these after
upgrading mrjob):

• options:

– base_tmp_dir is now local_tmp_dir

– cleanup options LOCAL_SCRATCH and REMOTE_SCRATCH are now LOCAL_TMP and
REMOTE_TMP

– emr_job_flow_id is now cluster_id

– emr_job_flow_pool_name is now pool_name

– hdfs_scratch_dir is now hadoop_tmp_dir

– pool_emr_job_flows is now pool_clusters

– s3_scratch_uri is now cloud_tmp_dir

– ssh_tunnel_to_job_tracker is now simply ssh_tunnel

• functions and methods:

– mrjob.job.MRJob.is_mapper_or_reducer() is now is_task()

– Filesystem method path_exists() is now simply exists()

– Filesystem method path_join() is now simply join()

– Use runner.fs explicitly when accessing filesystem methods (e.g. runner.fs.ls(), not
runner.ls())

• mrjob subcommands - mrjob create-job-flow is now mrjob create-cluster -
mrjob terminate-idle-job-flows is now mrjob terminate-idle-clusters -
mrjob terminate-job-flow is now mrjob temrinate-cluster

3.31.10 Other changes

• mrjob now requires boto 2.35.0 or newer (chances are you’re already doing this). Later 0.5.x releases of mrjob
may require newer versions of boto.

• visible_to_all_users now defaults to True

• HadoopFilesystem.rm() uses -skipTrash

• new iam_endpoint option

• custom hadoop_streaming_jars are properly uploaded

156 Chapter 3. What’s New

mrjob Documentation, Release 0.7.4

• JOB cleanup on EMR is temporarily disabled

• mrjob now follows symlinks when ls()ing the local filesystem (beware recursive symlinks!)

• The interpreter option disables bootstrap_mrjob by default (interpreter is meant for non-Python jobs)

• Cluster Pooling now respects ec2_key_pair

• cluster self-termination (see max_hours_idle) now respects non-streaming jobs

• LocalFilesystem now rejects URIs rather than interpreting them as local paths

• local and inline runners no longer have a default hadoop_version, instead handling jobconf in a version-
agnostic way

• steps_python_bin now defaults to the current Python interpreter.

• minor changes to mrjob.util:

– file_ext() takes filename, not path

– gunzip_stream() now yields chunks of bytes, not lines

– moved random_identifier() method here from mrjob.aws

– buffer_iterator_to_line_iterator() is now named to_lines(), and no longer appends
a trailing newline to data.

3.32 0.4.6

include: in conf files can now use relative paths in a meaningful way. See Relative includes.

List and environment variable options loaded from included config files can be totally overridden using the !clear
tag. See Clearing configs.

Options that take lists (e.g. setup) now treat scalar values as single-item lists. See this example.

Fixed a bug that kept the pool_wait_minutes option from being loaded from config files.

3.33 0.4.5

This release moves mrjob off the deprecated DescribeJobFlows EMR API call.

Warning: AWS again broke older versions mrjob for at least some new accounts, by returning 400s for the
deprecated DescribeJobFlows API call. If you have a newer AWS account (circa July 2015), you must use at least
this version of mrjob.

The new API does not provide a way to tell when a job flow (now called a “cluster”) stopped provisioning instances
and started bootstrapping, so the clock for our estimates of when we are close to the end of a billing hour now start at
cluster creation time, and are thus more conservative.

Related to this change, terminate_idle_job_flows no longer considers job flows in the STARTING state idle;
use report_long_jobs to catch jobs stuck in this state.

terminate_idle_job_flows performs much better on large numbers of job flows. Formerly, it collected all job
flow information first, but now it terminates idle job flows as soon as it identifies them.

collect_emr_stats and job_flow_pool have not been ported to the new API and will be removed in v0.5.0.

Added an aws_security_token option to allow you to run mrjob on EMR using temporary AWS credentials.

3.32. 0.4.6 157

http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_DescribeJobFlows.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_DescribeJobFlows.html

mrjob Documentation, Release 0.7.4

Added an emr_tags (see tags) option to allow you to tag EMR job flows at creation time.

EMRJobRunner now has a get_ami_version() method.

The hadoop_version option no longer has any effect in EMR. This option only every did anything on the 1.x AMIs,
which mrjob no longer supports.

Added many missing switches to the EMR tools (accessible from the mrjob command). Formerly, you had to use a
config file to get at these options.

You can now access the mrboss tool from the command line: mrjob boss <args>.

Previous 0.4.x releases have worked with boto as old as 2.2.0, but this one requires at least boto 2.6.0 (which is still
more than two years old). In any case, it’s recommended that you just use the latest version of boto.

This branch has a number of additional deprecation warnings, to help prepare you for mrjob v0.5.0. Please heed them;
a lot of deprecated things really are going to be completely removed.

3.34 0.4.4

mrjob now automatically creates and uses IAM objects as necessary to comply with new requirements from Amazon
Web Services.

(You do not need to install the AWS CLI or run aws emr create-default-roles as the link above describes;
mrjob takes care of this for you.)

Warning: The change that AWS made essentially broke all older versions of mrjob for all new accounts. If the
first time your AWS account created an Elastic MapReduce cluster was on or after April 6, 2015, you should use
at least this version of mrjob.
If you must use an old version of mrjob with a new AWS account, see this thread for a possible workaround.

--iam-job-flow-role has been renamed to --iam-instance-profile.

New --iam-service-role option.

3.35 0.4.3

This release also contains many, many bugfixes, one of which probably affects you! See CHANGES.txt for details.

Added a new subcommand, mrjob collect-emr-active-stats, to collect stats about active jobflows and
instance counts.

--iam-job-flow-role option allows setting of a specific IAM role to run this job flow.

You can now use --check-input-paths and --no-check-input-paths on EMR as well as Hadoop.

Files larger than 100MB will be uploaded to S3 using multipart upload if you have the filechunkio module installed.
You can change the limit/part size with the --s3-upload-part-size option, or disable multipart upload by set-
ting this option to 0. You can now require protocols to be strict from mrjob.conf ; this means unencodable input/output
will result in an exception rather than the job quietly incrementing a counter. It is recommended you set this for all
runners:

runners:
emr:
strict_protocols: true

hadoop:
strict_protocols: true

158 Chapter 3. What’s New

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles-creatingroles.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles-creatingroles.html
https://groups.google.com/forum/#!topic/mrjob/h7-1UYB7O20
https://github.com/Yelp/mrjob/blob/master/CHANGES.txt

mrjob Documentation, Release 0.7.4

inline:
strict_protocols: true

local:
strict_protocols: true

You can use --no-strict-protocols to turn off strict protocols for a particular job.

Tests now support pytest and tox.

Support for Python 2.5 has been dropped.

3.36 0.4.2

JarSteps, previously experimental, are now fully integrated into multi-step jobs, and work with both the Hadoop and
EMR runners. You can now use powerful Java libraries such as Mahout in your MRJobs. For more information, see
Jar steps.

Many options for setting up your task’s environment (--python-archive, --setup-cmd and
--setup-script) have been replaced by a powerful --setup option. See the Job Environment Setup
Cookbook for examples.

Similarly, many options for bootstrapping nodes on EMR (--bootstrap-cmd, --bootstrap-file,
--bootstrap-python-package and --bootstrap-script) have been replaced by a single
--bootstrap option. See the EMR Bootstrapping Cookbook.

This release also contains many bugfixes, including problems with boto 2.10.0+, bz2 decompression, and Python 2.5.

3.37 0.4.1

The SORT_VALUES option enables secondary sort, ensuring that your reducer(s) receive values in sorted order. This
allows you to do things with reducers that would otherwise involve storing all the values in memory, such as:

• Receiving a grand total before any subtotals, so you can calculate percentages on the fly. See
mr_next_word_stats.py for an example.

• Running a window of fixed length over an arbitrary amount of sorted values (e.g. a 24-hour window over
timestamped log data).

The max_hours_idle option allows you to spin up EMR job flows that will terminate themselves after being idle for a
certain amount of time, in a way that optimizes EMR/EC2’s full-hour billing model.

For development (not production), we now recommend always using job flow pooling, with max_hours_idle enabled.
Update your mrjob.conf like this:

runners:
emr:
max_hours_idle: 0.25
pool_emr_job_flows: true

Warning: If you enable pooling without max_hours_idle (or cronning terminate_idle_job_flows),
pooled job flows will stay active forever, costing you money!

You can now use --no-check-input-paths with the Hadoop runner to allow jobs to run even if hadoop fs
-ls can’t see their input files (see check_input_paths).

Two bits of straggling deprecated functionality were removed:

3.36. 0.4.2 159

http://mahout.apache.org/
https://github.com/Yelp/mrjob/blob/master/CHANGES.txt
https://github.com/Yelp/mrjob/blob/master/mrjob/examples/mr_next_word_stats.py

mrjob Documentation, Release 0.7.4

• Built-in protocols must be instantiated to be used (formerly they had class methods).

• Old locations for mrjob.conf are no longer supported.

This version also contains numerous bugfixes and natural extensions of existing functionality; many more things will
now Just Work (see CHANGES.txt).

3.38 0.4.0

The default runner is now inline instead of local. This change will speed up debugging for many users. Use local if
you need to simulate more features of Hadoop.

The EMR tools can now be accessed more easily via the mrjob command. Learn more here.

Job steps are much richer now:

• You can now use mrjob to run jar steps other than Hadoop Streaming. More info

• You can filter step input with UNIX commands. More info

• In fact, you can use arbitrary UNIX commands as your whole step (mapper/reducer/combiner). More info

If you Ctrl+C from the command line, your job will be terminated if you give it time. If you’re running on EMR, that
should prevent most accidental runaway jobs. More info

mrjob v0.4 requires boto 2.2.

We removed all deprecated functionality from v0.2:

• –hadoop-*-format

• –*-protocol switches

• MRJob.DEFAULT_*_PROTOCOL

• MRJob.get_default_opts()

• MRJob.protocols()

• PROTOCOL_DICT

• IF_SUCCESSFUL

• DEFAULT_CLEANUP

• S3Filesystem.get_s3_folder_keys()

We love contributions, so we wrote some guidelines to help you help us. See you on Github!

3.39 0.3.5

The pool_wait_minutes (--pool-wait-minutes) option lets your job delay itself in case a job flow becomes
available. Reference: Configuration quick reference

The JOB and JOB_FLOW cleanup options tell mrjob to clean up the job and/or the job flow on failure (including
Ctrl+C). See CLEANUP_CHOICES for more information.

3.40 0.3.3

You can now include one config file from another.

160 Chapter 3. What’s New

https://github.com/Yelp/mrjob/blob/master/CHANGES.txt

mrjob Documentation, Release 0.7.4

3.41 0.3.2

The EMR instance type/number options have changed to support spot instances:

• core_instance_bid_price

• core_instance_type

• master_instance_bid_price

• master_instance_type

• slave_instance_type (alias for core_instance_type)

• task_instance_bid_price

• task_instance_type

There is also a new ami_version option to change the AMI your job flow uses for its nodes.

For more information, see mrjob.emr.EMRJobRunner.__init__().

The new report_long_jobs tool alerts on jobs that have run for more than X hours.

3.42 0.3

3.42.1 Features

Support for Combiners

You can now use combiners in your job. Like mapper() and reducer(), you can redefine
combiner() in your subclass to add a single combiner step to run after your mapper but before
your reducer. (MRWordFreqCount does this to improve performance.) combiner_init() and
combiner_final() are similar to their mapper and reducer equivalents.

You can also add combiners to custom steps by adding keyword argumens to your call to steps().

More info: One-step jobs, Multi-step jobs

*_init(), *_final() for mappers, reducers, combiners

Mappers, reducers, and combiners have *_init() and *_final() methods that are run before and
after the input is run through the main function (e.g. mapper_init() and mapper_final()).

More info: One-step jobs, Multi-step jobs

Custom Option Parsers

It is now possible to define your own option types and actions using a custom OptionParser subclass.

Job Flow Pooling

EMR jobs can pull job flows out of a “pool” of similarly configured job flows. This can make it easier to
use a small set of job flows across multiple automated jobs, save time and money while debugging, and
generally make your life simpler.

More info: Cluster Pooling

SSH Log Fetching

3.41. 0.3.2 161

mrjob Documentation, Release 0.7.4

mrjob attempts to fetch counters and error logs for EMR jobs via SSH before trying to use S3. This
method is faster, more reliable, and works with persistent job flows.

More info: Configuring SSH credentials

New EMR Tool: fetch_logs

If you want to fetch the counters or error logs for a job after the fact, you can use the new fetch_logs
tool.

More info: mrjob.tools.emr.fetch_logs

New EMR Tool: mrboss

If you want to run a command on all nodes and inspect the output, perhaps to see what processes are
running, you can use the new mrboss tool.

More info: mrjob.tools.emr.mrboss

3.42.2 Changes and Deprecations

Configuration

The search path order for mrjob.conf has changed. The new order is:

• The location specified by MRJOB_CONF

• ~/.mrjob.conf

• ~/.mrjob (deprecated)

• mrjob.conf in any directory in PYTHONPATH (deprecated)

• /etc/mrjob.conf

If your mrjob.conf path is deprecated, use this table to fix it:

Old Location New Location
~/.mrjob ~/.mrjob.conf
somewhere in PYTHONPATH Specify in MRJOB_CONF

More info: mrjob.conf

Defining Jobs (MRJob)

Mapper, combiner, and reducer methods no longer need to contain a yield statement if they emit no data.

The --hadoop-*-format switches are deprecated. Instead, set your job’s
Hadoop formats with HADOOP_INPUT_FORMAT/HADOOP_OUTPUT_FORMAT or
hadoop_input_format()/hadoop_output_format(). Hadoop formats can no longer
be set from mrjob.conf.

In addition to --jobconf, you can now set jobconf values with the JOBCONF attribute or the
jobconf() method. To read jobconf values back, use mrjob.compat.jobconf_from_env(),
which ensures that the correct name is used depending on which version of Hadoop is active.

You can now set the Hadoop partioner class with --partitioner, the PARTITIONER attribute, or
the partitioner() method.

More info: Hadoop configuration

Protocols

162 Chapter 3. What’s New

http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH
http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH

mrjob Documentation, Release 0.7.4

Protocols can now be anything with a read() and write() method. Unlike previous ver-
sions of mrjob, they can be instance methods rather than class methods. You should use
instance methods when defining your own protocols.

The --*protocol switches and DEFAULT_*PROTOCOL are deprecated. Instead, use the
*_PROTOCOL attributes or redefine the *_protocol() methods.

Protocols now cache the decoded values of keys. Informal testing shows up to 30% speed
improvements.

More info: Protocols

Running Jobs

All Modes

All runners are Hadoop-version aware and use the correct jobconf and combiner invocation
styles. This change should decrease the number of warnings in Hadoop 0.20 environments.

All *_bin configuration options (hadoop_bin, python_bin, and ssh_bin) take lists
instead of strings so you can add arguments (like [’python’, ’-v’]). More info: Con-
figuration quick reference

Cleanup options have been split into cleanup and cleanup_on_failure. There are
more granular values for both of these options.

Most limitations have been lifted from passthrough options, including the former inability to
use custom types and actions.

The job_name_prefix option is gone (was deprecated).

All URIs are passed through to Hadoop where possible. This should relax some requirements
about what URIs you can use.

Steps with no mapper use cat instead of going through a no-op mapper.

Compressed files can be streamed with the cat() method.

EMR Mode

The default Hadoop version on EMR is now 0.20 (was 0.18).

The instance_type option only sets the instance type for slave nodes when there are mul-
tiple EC2 instance. This is because the master node can usually remain small without affecting
the performance of the job.

Inline Mode

Inline mode now supports the cmdenv option.

Local Mode

Local mode now runs 2 mappers and 2 reducers in parallel by default.

There is preliminary support for simulating some jobconf variables. The current list of sup-
ported variables is:

• mapreduce.job.cache.archives

• mapreduce.job.cache.files

• mapreduce.job.cache.local.archives

• mapreduce.job.cache.local.files

• mapreduce.job.id

3.42. 0.3 163

mrjob Documentation, Release 0.7.4

• mapreduce.job.local.dir

• mapreduce.map.input.file

• mapreduce.map.input.length

• mapreduce.map.input.start

• mapreduce.task.attempt.id

• mapreduce.task.id

• mapreduce.task.ismap

• mapreduce.task.output.dir

• mapreduce.task.partition

Other Stuff

boto 2.0+ is now required.

The Debian packaging has been removed from the repostory.

164 Chapter 3. What’s New

CHAPTER 4

Glossary

combiner A function that converts one key and a list of values that share that key (not necessarily all values for the
key) to zero or more key-value pairs based on some function. See Concepts for details.

Hadoop Streaming A special jar that lets you run code written in any language on Hadoop. It launches a subprocess,
passes it input on stdin, and receives output on stdout. Read more here.

input protocol The protocol that converts the input file to the key-value pairs seen by the first step. See Protocols
for details.

internal protocol The protocol that converts the output of one step to the intput of the next. See Protocols for details.

mapper A function that converts one key-value pair to zero or more key-value pairs based on some function. See
Concepts for details.

output protocol The protocol that converts the output of the last step to the bytes written to the output file. See
Protocols for details.

protocol An object that converts a stream of bytes to and from Python objects. See Protocols for details.

reducer A function that converts one key and all values that share that key to zero or more key-value pairs based on
some function. See Concepts for details.

step One mapper, combiner, and reducer. Any of these may be omitted from a mrjob step as long as at least one is
included.

Appendices

genindex

modindex

search

165

http://hadoop.apache.org/docs/stable/streaming.html

mrjob Documentation, Release 0.7.4

166 Chapter 4. Glossary

Python Module Index

m
mrjob.ami, 87
mrjob.cat, 87
mrjob.compat, 98
mrjob.conf, 99
mrjob.dataproc, 101
mrjob.emr, 102
mrjob.fs.base, 123
mrjob.hadoop, 103
mrjob.inline, 104
mrjob.job, 104
mrjob.local, 115
mrjob.parse, 116
mrjob.protocol, 116
mrjob.retry, 120
mrjob.runner, 120
mrjob.setup, 127
mrjob.spark.runner, 119
mrjob.step, 124
mrjob.tools.diagnose, 92
mrjob.tools.emr.audit_usage, 88
mrjob.tools.emr.create_cluster, 89
mrjob.tools.emr.mrboss, 89
mrjob.tools.emr.report_long_jobs, 93
mrjob.tools.emr.s3_tmpwatch, 94
mrjob.tools.emr.terminate_cluster, 97
mrjob.tools.emr.terminate_idle_clusters,

97
mrjob.tools.spark_submit, 94
mrjob.util, 130

167

mrjob Documentation, Release 0.7.4

168 Python Module Index

Index

Symbols
$AWS_SECURITY_TOKEN, 145, 147
$AWS_SESSION_TOKEN, 145
$HADOOP_*, 154
$PYTHONPATH, 61
$mapreduce_map_input_file, 48
__init__() (mrjob.hadoop.HadoopJobRunner method),

103
__init__() (mrjob.inline.InlineMRJobRunner method),

104
__init__() (mrjob.job.MRJob method), 108
__init__() (mrjob.local.LocalMRJobRunner method), 116
__init__() (mrjob.retry.RetryWrapper method), 120
__init__() (mrjob.runner.MRJobRunner method), 120

A
add() (mrjob.setup.UploadDirManager method), 127
add() (mrjob.setup.WorkingDirManager method), 128
add_file_arg() (mrjob.job.MRJob method), 110
add_passthru_arg() (mrjob.job.MRJob method), 110
ARCHIVES (mrjob.job.MRJob attribute), 111
archives() (mrjob.job.MRJob method), 112
AWS_ACCESS_KEY_ID, 68, 72
AWS_SECRET_ACCESS_KEY, 68, 72
AWS_SESSION_TOKEN, 72

B
bunzip2_stream() (in module mrjob.cat), 87
BytesProtocol (class in mrjob.protocol), 117
BytesValueProtocol (class in mrjob.protocol), 117

C
can_handle_path() (mrjob.fs.base.Filesystem method),

123
cat() (mrjob.fs.base.Filesystem method), 123
cat_output() (mrjob.runner.MRJobRunner method), 121
cleanup() (mrjob.runner.MRJobRunner method), 121
CLEANUP_CHOICES (in module mrjob.options), 122
cmd_line() (in module mrjob.util), 130
combine_cmds() (in module mrjob.conf), 100

combine_dicts() (in module mrjob.conf), 100
combine_envs() (in module mrjob.conf), 100
combine_jobconfs() (in module mrjob.conf), 100
combine_lists() (in module mrjob.conf), 100
combine_local_envs() (in module mrjob.conf), 101
combine_pairs() (mrjob.job.MRJob method), 113
combine_path_lists() (in module mrjob.conf), 101
combine_paths() (in module mrjob.conf), 101
combine_values() (in module mrjob.conf), 101
combiner, 165
combiner() (mrjob.job.MRJob method), 105
combiner_cmd() (mrjob.job.MRJob method), 106
combiner_final() (mrjob.job.MRJob method), 106
combiner_init() (mrjob.job.MRJob method), 105
combiner_pre_filter() (mrjob.job.MRJob method), 107
configure_args() (mrjob.job.MRJob method), 110
counters() (mrjob.runner.MRJobRunner method), 122
create_bucket() (mrjob.emr.S3Filesystem method), 103

D
DataprocJobRunner (class in mrjob.dataproc), 101
decompress() (in module mrjob.cat), 88
describe_base_emr_images() (in module mrjob.ami), 87
DIRS (mrjob.job.MRJob attribute), 111
dirs() (mrjob.job.MRJob method), 112
du() (mrjob.fs.base.Filesystem method), 123

E
EMRJobRunner (class in mrjob.emr), 102
environment variable

$AWS_SECURITY_TOKEN, 145, 147
$AWS_SESSION_TOKEN, 145
$HADOOP_*, 154
$PYTHONPATH, 61
$mapreduce_map_input_file, 48
AWS_ACCESS_KEY_ID, 68, 72
AWS_SECRET_ACCESS_KEY, 68, 72
AWS_SESSION_TOKEN, 72
MRJOB_CONF, 34, 99, 162
PATH, 35, 131

169

mrjob Documentation, Release 0.7.4

PYTHONPATH, 24, 57, 162
TZ, 34

exists() (mrjob.fs.base.Filesystem method), 123
expand_path() (in module mrjob.util), 130

F
file_ext() (in module mrjob.util), 130
FILES (mrjob.job.MRJob attribute), 111
files() (mrjob.job.MRJob method), 112
Filesystem (class in mrjob.fs.base), 123
find_mrjob_conf() (in module mrjob.conf), 99
fs (mrjob.runner.MRJobRunner attribute), 123
fully_qualify_hdfs_path() (in module mrjob.hadoop), 103

G
GCSFilesystem (class in mrjob.dataproc), 101
GENERIC_ARGS (in module mrjob.step), 127
get_all_bucket_names() (mrjob.emr.S3Filesystem

method), 103
get_bucket() (mrjob.emr.S3Filesystem method), 103
get_cluster_id() (mrjob.emr.EMRJobRunner method),

102
get_hadoop_version() (mrjob.runner.MRJobRunner

method), 122
get_image_version() (mrjob.emr.EMRJobRunner

method), 102
get_job_key() (mrjob.runner.MRJobRunner method), 122
get_job_steps() (mrjob.emr.EMRJobRunner method),

102
get_opts() (mrjob.runner.MRJobRunner method), 122
gunzip_stream() (in module mrjob.cat), 88

H
Hadoop Streaming, 165
HADOOP_INPUT_FORMAT (mrjob.job.MRJob at-

tribute), 113
hadoop_input_format() (mrjob.job.MRJob method), 113
HADOOP_OUTPUT_FORMAT (mrjob.job.MRJob at-

tribute), 114
hadoop_output_format() (mrjob.job.MRJob method), 114
HadoopJobRunner (class in mrjob.hadoop), 103

I
increment_counter() (mrjob.job.MRJob method), 108
InlineMRJobRunner (class in mrjob.inline), 104
INPUT (in module mrjob.step), 127
input protocol, 165
INPUT_PROTOCOL (mrjob.job.MRJob attribute), 108
input_protocol() (mrjob.job.MRJob method), 109
internal protocol, 165
INTERNAL_PROTOCOL (mrjob.job.MRJob attribute),

109
internal_protocol() (mrjob.job.MRJob method), 109

is_s3_uri() (in module mrjob.parse), 116
is_task() (mrjob.job.MRJob method), 111
is_uri() (in module mrjob.parse), 116

J
JarStep (class in mrjob.step), 125
JOBCONF (mrjob.job.MRJob attribute), 114
jobconf() (mrjob.job.MRJob method), 114
jobconf_from_dict() (in module mrjob.compat), 98
jobconf_from_env() (in module mrjob.compat), 98
join() (mrjob.fs.base.Filesystem method), 123
JSONProtocol (class in mrjob.protocol), 118
JSONValueProtocol (class in mrjob.protocol), 118

L
LIBJARS (mrjob.job.MRJob attribute), 114
libjars() (mrjob.job.MRJob method), 114
load_args() (mrjob.job.MRJob method), 111
load_opts_from_mrjob_conf() (in module mrjob.conf),

99
load_opts_from_mrjob_confs() (in module mrjob.conf),

100
LocalMRJobRunner (class in mrjob.local), 115
log_to_null() (in module mrjob.util), 130
log_to_stream() (in module mrjob.util), 130
ls() (mrjob.fs.base.Filesystem method), 123

M
make_ec2_client() (mrjob.emr.EMRJobRunner method),

103
make_emr_client() (mrjob.emr.EMRJobRunner method),

102
make_iam_client() (mrjob.emr.EMRJobRunner method),

103
make_runner() (mrjob.job.MRJob method), 108
make_s3_client() (mrjob.emr.S3Filesystem method), 103
make_s3_resource() (mrjob.emr.S3Filesystem method),

103
map_pairs() (mrjob.job.MRJob method), 113
map_version() (in module mrjob.compat), 99
mapper, 165
mapper() (mrjob.job.MRJob method), 104
mapper_cmd() (mrjob.job.MRJob method), 106
mapper_final() (mrjob.job.MRJob method), 105
mapper_init() (mrjob.job.MRJob method), 105
mapper_pre_filter() (mrjob.job.MRJob method), 106
mapper_raw() (mrjob.job.MRJob method), 107
md5sum() (mrjob.fs.base.Filesystem method), 123
mkdir() (mrjob.fs.base.Filesystem method), 123
mr_job_script() (mrjob.job.MRJob class method), 112
MRJob (class in mrjob.job), 104
mrjob.ami (module), 87
mrjob.cat (module), 87
mrjob.compat (module), 98

170 Index

mrjob Documentation, Release 0.7.4

mrjob.conf (module), 99
mrjob.dataproc (module), 101
mrjob.emr (module), 102
mrjob.fs.base (module), 123
mrjob.hadoop (module), 103
mrjob.inline (module), 104
mrjob.job (module), 104
mrjob.local (module), 115
mrjob.parse (module), 116
mrjob.protocol (module), 116
mrjob.retry (module), 120
mrjob.runner (module), 120
mrjob.setup (module), 127
mrjob.spark.runner (module), 119
mrjob.step (module), 124
mrjob.tools.diagnose (module), 92
mrjob.tools.emr.audit_usage (module), 88
mrjob.tools.emr.create_cluster (module), 89
mrjob.tools.emr.mrboss (module), 89
mrjob.tools.emr.report_long_jobs (module), 93
mrjob.tools.emr.s3_tmpwatch (module), 94
mrjob.tools.emr.terminate_cluster (module), 97
mrjob.tools.emr.terminate_idle_clusters (module), 97
mrjob.tools.spark_submit (module), 94
mrjob.util (module), 130
MRJOB_CONF, 34, 99, 162
MRJobRunner (class in mrjob.runner), 120
MRStep (class in mrjob.step), 124

N
name() (mrjob.setup.WorkingDirManager method), 128
name_to_path() (mrjob.setup.WorkingDirManager

method), 128
name_uniquely() (in module mrjob.setup), 128

O
OUTPUT (in module mrjob.step), 127
output protocol, 165
OUTPUT_PROTOCOL (mrjob.job.MRJob attribute), 109
output_protocol() (mrjob.job.MRJob method), 109

P
parse_legacy_hash_path() (in module mrjob.setup), 129
parse_mr_job_stderr() (in module mrjob.parse), 116
parse_output() (mrjob.job.MRJob method), 108
parse_s3_uri() (in module mrjob.parse), 116
parse_setup_cmd() (in module mrjob.setup), 129
PARTITIONER (mrjob.job.MRJob attribute), 114
partitioner() (mrjob.job.MRJob method), 114
pass_arg_through() (mrjob.job.MRJob method), 111
PATH, 35, 131
path_to_uri() (mrjob.setup.UploadDirManager method),

127
paths() (mrjob.setup.WorkingDirManager method), 128

pick_protocols() (mrjob.job.MRJob method), 109
PickleProtocol (class in mrjob.protocol), 119
PickleValueProtocol (class in mrjob.protocol), 119
protocol, 165
put() (mrjob.fs.base.Filesystem method), 123
PYTHONPATH, 24, 57, 162

R
random_identifier() (in module mrjob.util), 130
RapidJSONProtocol (class in mrjob.protocol), 118
RapidJSONValueProtocol (class in mrjob.protocol), 118
RawProtocol (class in mrjob.protocol), 117
RawValueProtocol (class in mrjob.protocol), 117
reduce_pairs() (mrjob.job.MRJob method), 113
reducer, 165
reducer() (mrjob.job.MRJob method), 104
reducer_cmd() (mrjob.job.MRJob method), 106
reducer_final() (mrjob.job.MRJob method), 105
reducer_init() (mrjob.job.MRJob method), 105
reducer_pre_filter() (mrjob.job.MRJob method), 106
ReprProtocol (class in mrjob.protocol), 119
ReprValueProtocol (class in mrjob.protocol), 119
RetryWrapper (class in mrjob.retry), 120
rm() (mrjob.fs.base.Filesystem method), 124
run() (mrjob.job.MRJob class method), 107
run() (mrjob.runner.MRJobRunner method), 121
run_combiner() (mrjob.job.MRJob method), 113
run_job() (mrjob.job.MRJob method), 112
run_mapper() (mrjob.job.MRJob method), 112
run_reducer() (mrjob.job.MRJob method), 113

S
S3Filesystem (class in mrjob.fs.s3), 102
safeeval() (in module mrjob.util), 130
sandbox() (mrjob.job.MRJob method), 115
save_current_environment() (in module mrjob.util), 130
save_cwd() (in module mrjob.util), 130
save_sys_path() (in module mrjob.util), 131
save_sys_std() (in module mrjob.util), 131
set_status() (mrjob.job.MRJob method), 108
shlex_split() (in module mrjob.util), 131
SimpleJSONProtocol (class in mrjob.protocol), 118
SimpleJSONValueProtocol (class in mrjob.protocol), 118
SORT_VALUES (mrjob.job.MRJob attribute), 109
spark() (mrjob.job.MRJob method), 107
SparkJarStep (class in mrjob.step), 125
SparkMRJobRunner (class in mrjob.spark.runner), 119
SparkScriptStep (class in mrjob.step), 126
SparkStep (class in mrjob.step), 125
StandardJSONProtocol (class in mrjob.protocol), 118
StandardJSONValueProtocol (class in mrjob.protocol),

118
step, 165
steps() (mrjob.job.MRJob method), 107

Index 171

mrjob Documentation, Release 0.7.4

strip_microseconds() (in module mrjob.util), 131

T
TextProtocol (class in mrjob.protocol), 117
TextValueProtocol (class in mrjob.protocol), 117
to_chunks() (in module mrjob.cat), 88
to_lines() (in module mrjob.util), 131
to_uri() (in module mrjob.parse), 116
touchz() (mrjob.fs.base.Filesystem method), 124
translate_jobconf() (in module mrjob.compat), 99
translate_jobconf_dict() (in module mrjob.compat), 99
translate_jobconf_for_all_versions() (in module mr-

job.compat), 99
TZ, 34

U
UltraJSONProtocol (class in mrjob.protocol), 118
UltraJSONValueProtocol (class in mrjob.protocol), 118
unarchive() (in module mrjob.util), 131
unique() (in module mrjob.util), 131
UploadDirManager (class in mrjob.setup), 127
uri() (mrjob.setup.UploadDirManager method), 127
uses_yarn() (in module mrjob.compat), 99

V
version_gte() (in module mrjob.compat), 99

W
which() (in module mrjob.util), 131
WorkingDirManager (class in mrjob.setup), 128

Z
zip_dir() (in module mrjob.util), 131

172 Index

	Guides
	Why mrjob?
	Fundamentals
	Concepts
	Writing jobs
	Runners
	Spark
	Config file format and location
	Options available to all runners
	Hadoop-related options
	Spark runner options
	Configuration quick reference
	Cloud runner options
	Job Environment Setup Cookbook
	Hadoop Cookbook
	Testing jobs
	Cloud Dataproc
	Elastic MapReduce
	Python 2 vs. Python 3
	Contributing to mrjob

	Reference
	mrjob.ami - building custom AMIs
	mrjob.cat - decompress files based on extension
	mrjob.cmd: The mrjob command-line utility
	mrjob.compat - Hadoop version compatibility
	mrjob.conf - parse and write config files
	mrjob.dataproc - run on Dataproc
	mrjob.emr - run on EMR
	mrjob.hadoop - run on your Hadoop cluster
	mrjob.inline - debugger-friendly local testing
	mrjob.job - defining your job
	mrjob.local - simulate Hadoop locally with subprocesses
	mrjob.parse - log parsing
	mrjob.protocol - input and output
	mrjob.spark.runner - run on any Spark cluster
	mrjob.retry - retry on transient errors
	mrjob.runner - base class for all runners
	mrjob.step - represent Job Steps
	mrjob.setup - job environment setup
	mrjob.util - general utility functions

	What's New
	0.7.4
	0.7.3
	0.7.2
	0.7.1
	0.7.0
	0.6.12
	0.6.11
	0.6.10
	0.6.9
	0.6.8
	0.6.7
	0.6.6
	0.6.5
	0.6.4
	0.6.3
	0.6.2
	0.6.1
	0.6.0
	0.5.12
	0.5.11
	0.5.10
	0.5.9
	0.5.8
	0.5.7
	0.5.6
	0.5.5
	0.5.4
	0.5.3
	0.5.2
	0.5.1
	0.5.0
	0.4.6
	0.4.5
	0.4.4
	0.4.3
	0.4.2
	0.4.1
	0.4.0
	0.3.5
	0.3.3
	0.3.2
	0.3

	Glossary
	Python Module Index

